摘要:
A plurality of Group III nitride compound semiconductor layers are formed on a substrate for performing the formation of elements and the formation of electrodes. The Group III nitride compound semiconductor layers on parting lines are removed by etching or dicing due to a dicer so that only an electrode-forming layer on a side near the substrate remains or no Group III nitride compound semiconductor layer remains on the parting lines. A protective film is formed on the whole front surface. Separation grooves are formed in the front surface of the substrate by laser beam irradiation. The protective film is removed together with reaction products produced by the laser beam irradiation. The rear surface of the substrate 1s is polished to reduce the thickness of the substrate. Then, rear grooves corresponding to the latticed frame-shaped parting lines are formed in the rear surface of the substrate. The substrate is divided into individual elements along the parting lines.
摘要:
A plurality of Group III nitride compound semiconductor layers are formed on a substrate for performing the formation of elements and the formation of electrodes. The Group III nitride compound semiconductor layers on parting lines are removed by etching or dicing due to a dicer so that only an electrode-forming layer on a side near the substrate remains or no Group III nitride compound semiconductor layer remains on the parting lines. A protective film is formed on the whole front surface. Separation grooves are formed in the front surface of the substrate by laser beam irradiation. The protective film is removed together with reaction products produced by the laser beam irradiation. The rear surface of the substrate 1s is polished to reduce the thickness of the substrate. Then, rear grooves corresponding to the latticed frame-shaped parting lines are formed in the rear surface of the substrate. The substrate is divided into individual elements along the parting lines.
摘要:
A process of forming separation grooves for separating a semiconductor wafer into individual light-emitting devices, a process for thinning the substrate, process for adhering the wafer to the adhesive sheet to expose a substrate surface on the reverse or backside of the wafer, a scribing process for forming split lines in the substrate for dividing the wafer into light-emitting devices, and a process of forming a mirror structure comprising a light transmission layer, a reflective layer, and a corrosion-resistant layer, which are laminated in sequence using sputtering or deposition processes. Because the light transmission layer is laminated on the adhesive sheet, gases normally volatilized from the adhesion materials are sealed and do not chemically combine with the metal being deposited as the reflective layer. As a result, reflectivity of the reflective layer can be maintained.
摘要:
A process of forming separation grooves for separating a semiconductor wafer into individual light-emitting devices, a process for thinning the substrate, process for adhering the wafer to the adhesive sheet to expose a substrate surface on the reverse or backside of the wafer, a scribing process for forming split lines in the substrate for dividing the wafer into light-emitting devices, and a process of forming a mirror structure comprising a light transmission layer, a reflective layer, and a corrosion-resistant layer, which are laminated in sequence using sputtering or deposition processes. Because the light transmission layer is laminated on the adhesive sheet, gases normally volatilized from the adhesion materials are sealed and do not chemically combine with the metal being deposited as the reflective layer. As a result, reflectivity of the reflective layer can be maintained.
摘要:
An object of the present invention is to provide a large-size light-emitting device from which uniform light emission can be obtained.That is, in the present invention, in a device having an outermost diameter of not smaller than 700 μm, a distance from an n electrode to a farthest point of a p electrode is selected to be not larger than 500 μm.
摘要:
An object of the present invention is to provide a large-size light-emitting device from which uniform light emission can be obtained. That is, in the present invention, in a device having an outermost diameter of not smaller than 700 &mgr;m, a distance from an n electrode to a farthest point of a p electrode is selected to be not larger than 500 &mgr;m.
摘要:
A reflective layer 10 is formed on a back surface 11b of a sapphire substrate 11. The reflective layer 10 includes an extension portion 10a which extends so as to cover almost all the sidewalls 21a of a light-emitting device in the vicinity of the sapphire substrate. Thus, since adhesion between the reflective layer 10 and the substrate is greatly enhanced in the vicinity of the periphery of the surface on which the reflective layer is formed (the substrate back surface 11b) by virtue of formation of the aforementioned extension portion 10a, exfoliation of the reflective layer 10 from the substrate is prevented. Therefore, even when a process in which the reflective layer 10 is attached onto an adhesive sheet to thereby secure the light-emitting device 100 on the sheet is employed, generation of a defective product having an exfoliated reflective layer can be prevented. Thus, the quality and productivity of the semiconductor light-emitting device 100 including the reflective layer 10 provided for enhancing emission efficiency can be considerably improved. The sidewalls 21a may have a short-circuit-prevention groove-like portion for preventing excessive extension of the reflective layer 10.
摘要:
Provided is a method of making a multi-property polyurethane part by RIM having a surface layer and an interior layer. The surface layer and the interior layer have different properties. The pressure in the cavity of the mold is reduced and a surface forming RIM polyurethane material is injected into the evacuated cavity, whereby the surface layer of the molded part is formed by RIM. An interior forming RIM polyurethane material is injected into the evacuated cavity, whereby the interior of the molded part is also formed by RIM.
摘要:
It is object of the present invention to provide a method by which a variable property component, such as two-color parts, having the interior covered with a thin film of the surface area is molded from polyurethanes by RIM, eliminating the need for separately applying a mold release agent or colorants to the cavity surface. Greater latitude in design due to varying physical characteristics is provided.