摘要:
A thermal recording medium comprising a color former, a developer and a reversible material which can effect a reversible change in at lease a part of a composition system where thermal energies with two different values are supplied or where two different heat histories are provided, and a phase separation controller serves to change phase separation rate between the color former or the developer and the reversible material in the vicinity of its melting point, if necessary.
摘要:
A recording element which comprises a recording layer containing, a first charge-generating material adapted to generate a first electric charge by a supply of external energy, a first charge-transporting material for transporting the first electric charge, a charge-capturing material for capturing the first electric charge, and a material having an electro-optical effect, wherein a change in optical properties of the recording layer is caused only through an inner electric field to be generated by a delivery of electric charge between the first charge-generating material generating electric charge and the charge-capturing material capturing the electric charge.
摘要:
An electrophotographic receptor includes a conductive support, and a photoconductive layer formed on the conductive support, wherein a minimum electric field strength required for a waveform, which indicates a change in photocurrent generated when a voltage is applied to and a light pulse is radiated on the photoconductive layer with respect to a time, to have a single peak and an upwardly projecting shape is 200 kV/cm or less. The photoconductive layer is constituted by a charge generating layer containing a charge generating substance and a charge transporting layer containing a charge transporting substance. The waveform characteristic of the photoconductive layer can be adjusted by the type and amount of the charge generating substance, the charge transporting substance, or a binder, and a method of manufacturing the charge transporting substance.
摘要:
A reversible thermal recording medium comprises a composition containing a color former, a developer, a reversible material capable of reversibly changing the state of the composition by supplying heat energies with two different values, and, as required, a phase separation controller which permits changing the phase separation speed of the developer at temperatures in the vicinity of the melting point of the phase separation controller, at least 80% by weight of the reversible material being a sterol compound in which the carbon-to-carbon bond between 2- and 3-positions of the stroid skeleton is a single bond, the carbon-to-carbon bond between 3- and 4-positions of the steroid skeleton is a single bond, a hydroxyl group is attached to the carbon atom in at least the 3-position of the steroid skeleton, and a specified chemical structure is bonded at 16- and 17-positions of the stroid skeleton, and the phase separation controller being provided by a low molecular organic material, the maximum carbon chain length there of being at least 10.
摘要:
A nonvolatile semiconductor memory device of an embodiment includes: a semiconductor layer; a tunnel insulating film that is formed on the semiconductor layer and includes a first organic molecular film including first organic molecules each having an alkyl molecular chain as the main chain; a charge storage layer formed on the tunnel insulating film, the charge storage layer being made of an inorganic material; a block insulating film formed on the charge storage layer; and a control gate electrode formed on the block insulating film.
摘要:
A nonvolatile semiconductor memory device of an embodiment includes: a semiconductor layer; a tunnel insulating film formed on the semiconductor layer; an organic molecular layer that is formed on the tunnel insulating film, and includes first organic molecules and second organic molecules having a smaller molecular weight than the first organic molecules, the first organic molecules each including a first alkyl chain or a first alkyl halide chain having one end bound to the tunnel insulating film, the first organic molecules each including a charge storage portion bound to the other end of the first alkyl chain or the first alkyl halide chain, the second organic molecules each including a second alkyl chain or a second alkyl halide chain having one end bound to the tunnel insulating film; a block insulating film formed on the organic molecular layer; and a control gate electrode formed on the block insulating film.
摘要:
There is provided an optical recording medium comprising a recording layer containing a charge-generating material capable of generating a first electric charge and a second electric charge by beam irradiation, the second electric charge having a different polarity from that of the first electric charge, a charge-transport material enabling at least the first electric charge to be transported to isolate the first electric charge and the second electric charge, and a trapping material retaining the first electric charge. The optical characteristics of the recording layer is changed in accordance with changes in spatial distribution of the first and second electric charges, and the trapping material is provided with a conjugated system and with at least one nitrogen-containing heterocyclic group, and bonded through an unsaturated carbon atom of the heterocyclic group to the conjugated system.
摘要:
An optical disk comprising a recording layer and a super-resolution film disposed on the reproduction-beam incident side of the recording layer, wherein the super-resolution film is formed of a fine particle-dispersed film comprising a matrix and semiconductor fine particles dispersed in the matrix or formed of a semiconductor continuous film, and wherein content of a matrix material or a contamination mixed in the semiconductor fine particles or the semiconductor continuous film is not more than 20 at %.
摘要:
A row of (n+m) powder containers which contain powder for chromatography and a row of (n+m) solvent containers which contain solvent for partition are arranged closely in parallel to each other. 0): A predetermined quantity of sample solution is added to the m-th solvent container from the left. 1): The powder containers and the solvent containers of the same numbers from the left in the rows are coupled with each other to form a row of (n+m) pairs of the powder containers and the solvent containers. 2): The powder and solvent of each pair are mixed and stirred until components to be separated come into partition equilibrium. 3): The powder and solvent of each pair are separated and made to exist in the original containers of each pair. 4): The pairs are decoupled to form the row of the powder containers and the row of the solvent containers again, and the rows are shifted from each other by one container in the opposite directions alternately. The steps 1)-4) are repeated, completing one process composed of the steps 0)-4)+steps 1)-4). The process is repeated. Each time the rows are shifted, the leading container containing separated sample component is removed, and a new container is added to the rear of the row to keep the number of containers in the row constant. By this method, the samples can be separated by relatively small number of partition equilibrium steps.