摘要:
The present invention provides a microporous carbon material capable of expressing functions that supported metal has while maintaining pore functions that the microporous carbon material inherently possesses. The microporous carbon material 5 includes: a three-dimensional long-range ordered structure within a range from 0.7 nm or more to 2 nm or less; and micropores 2a, wherein a transition metal 4 is supported on surfaces of the micropores 2a. The microporous carbon material is obtained by a method including: introducing an organic compound on a surface of and inside the micropores of a porous material containing transition metal, and obtaining a composite of the microporous carbon material containing the transition metal and the porous material by carbonizing the organic compound by a chemical vapor deposition method; and removing the porous material. Alternatively, the microporous carbon material is obtained by a method including: introducing an organic compound on a surface of a porous material and obtaining a microporous carbon material by a chemical vapor deposition method; and supporting the transition metal on a surface of the microporous carbon material by immersing and impregnating the microporous carbon material in a transition metal salt solution.
摘要:
The present invention provides a microporous carbon material capable of expressing functions that supported metal has while maintaining pore functions that the microporous carbon material inherently possesses. The microporous carbon material 5 includes: a three-dimensional long-range ordered structure within a range from 0.7 nm or more to 2 nm or less; and micropores 2a, wherein a transition metal 4 is supported on surfaces of the micropores 2a. The microporous carbon material is obtained by a method including: introducing an organic compound on a surface of and inside the micropores of a porous material containing transition metal, and obtaining a composite of the microporous carbon material containing the transition metal and the porous material by carbonizing the organic compound by a chemical vapor deposition method; and removing the porous material. Alternatively, the microporous carbon material is obtained by a method including: introducing an organic compound on a surface of a porous material and obtaining a microporous carbon material by a chemical vapor deposition method; and supporting the transition metal on a surface of the microporous carbon material by immersing and impregnating the microporous carbon material in a transition metal salt solution.
摘要:
The present invention provides composite material in which Si and carbon are combined so as to form an unprecedented structure; method for fabricating the same; and negative electrode material for lithium-ion batteries ensuring high charge-discharge capacity and high cycle performance. By heating an aggregate of Si nanoparticles and using a source gas containing carbon, a carbon layer is formed on each of the Si particles. Walls 12 forming a space 13a containing Si particles 11 and a space 13b not containing Si particles 11 are constructed by this carbon layer.
摘要:
A process and an apparatus for treating exhaust gases, comprising an aeration stirring tank (5) employing an aqueous alkaline liquid, and, as a posterior stage, a gas-liquid contact device (7) and/or a packed column (11). The apparatus can remove at the posterior stage harmful gases that the aeration stirring tank fails to remove, for example, water-soluble organic compounds such as ethanol, halogenated silicon compounds such as SiCl4, and halogen gases such as F2 and Cl2. The process and apparatus are particularly suitable for purifying exhaust gases discharged from a semiconductor production device.
摘要:
A graphene-on-oxide substrate according to the present invention includes: a substrate having a metal oxide layer formed on its surface; and, formed on the metal oxide layer, a graphene layer including at least one atomic layer of the graphene. The graphene layer is grown generally parallel to the surface of the metal oxide layer, and the inter-atomic-layer distance between the graphene atomic layer adjacent to the surface of the metal oxide layer and the surface atomic layer of the metal oxide layer is 0.34 nm or less. Preferably, the arithmetic mean surface roughness Ra of the metal oxide layer is 1 nm or less.
摘要:
A carbon nanotube composite material contains a carbon nanotube and a continuous layer of a metal covering the inner surface of the carbon nanotube. It is produced by forming a metallic matrix layer and treating the metallic matrix layer to form plural nanoholes in the metallic matrix layer to thereby form a nanohole structure, the nanoholes extending in a direction substantially perpendicular to the plane of the metallic matrix layer; forming carbon nanotubes inside the nanoholes; and covering inner surfaces of the carbon nanotubes with a continous layer of a metal. It has a well controlled small size, has excellent and uniform physical properties, is resistant to oxidation of the metal with time, is highly chemically stable, has good durability enabling repetitive use, has good coatability, high wettability and dispersibility with other materials, is easily chemically modified, is easily handled and is useful in various fields.
摘要:
A method for preventing scale formation in a wet type exhaust gas treating apparatus is disclosed. An exhaust gas is contacted with a washing liquid containing water. The washing liquid contains at least one chelating agent which reacts with ions becoming a cause of scale formation to form a water-soluble chelate compound.
摘要:
A graphene-on-oxide substrate according to the present invention includes: a substrate having a metal oxide layer formed on its surface; and, formed on the metal oxide layer, a graphene layer including at least one atomic layer of the graphene. The graphene layer is grown generally parallel to the surface of the metal oxide layer, and the inter-atomic-layer distance between the graphene atomic layer adjacent to the surface of the metal oxide layer and the surface atomic layer of the metal oxide layer is 0.34 nm or less. Preferably, the arithmetic mean surface roughness Ra of the metal oxide layer is 1 nm or less.
摘要:
A solid product removal method for removing a solid product adhering to a gas exhaust pipe member having a rinsing water inlet pipe member with a tip opening located inside the gas exhaust pipe member for feeding rinsing water into the inside of the gas exhaust pipe member from the tip opening thereof; hence a solid product formed newly upon reaction with the rinsing water and adhering thereto can be rinsed off with the rinsing water introduced from another tip opening located at a different position; and therefore, an adherence of the solid product can be prevented from heating the inner face of the gas exhaust pipe member. A scraping member for scraping the solid product stuck to the inner face of the gas exhaust pipe member may be used.
摘要:
A carbon nanotube has a carbon network film of polycrystalline structure divided into crystal regions along the axis of the tube, and the length along the tube axis of each crystal region preferably ranges from 3 to 6 nm. An electron source includes a carbon nanotube having a cylindrical shape and the end of which on the substrate side is closed and disposed in a fine hole. The end on the substrate side of the tube is firmly adhered to the substrate. The carbon nanotube is produced by a method in which carbon is deposited under the condition that no metal catalyst is present in the fine hole and produced by a method in which after the carbon deposition the end of the carbon deposition film is modified by etching the carbon deposition film using a plasma. Therefore, an electron source excellent in the evenness of field emission characteristics in a field emission region (pixel) in the device plane and driven with low voltage can be provided, and a display operated with ultralow power consumption exhibiting ultrahigh luminance can be provided.