摘要:
A plasma generation method in a toroidal plasma generator that includes a gas passage having a gas entrance and a gas outlet and forming a circuitous path and a coil wound around a part of the gas passage includes the steps of supplying a mixed gas of an Ar gas and an NF3 gas containing at least 5% of NF3 and igniting plasma by driving the coil with a high-frequency power, wherein the plasma ignition step is conducted under a total pressure of 6.65-66.5 Pa.
摘要:
A target for processing (W) is placed on a placing member (21) that is in a chamber (12). The placing member (21) comprises a resistive layer (25). A power source (28) forms a magnetic field around an induction coil (27) by passing a current through the induction coil (27) that is provided on the out side of the chamber (12). The resistive layer (25) is heated by induction heating that occurs by the formed magnetic field, and heats the target for processing (W) that is placed on the placing member (21).
摘要:
An object of the present invention is to provide a microelectrode capable of recording action potentials of nerve cellsneurons as large-amplitude waveforms and being appropriate for multi-channeling. The electrode 1 of the present invention comprises a conductive linear core material 2, an insulating coating layer 3a with which the outer circumference of the linear core material is coated, and an extending part 3b formed by extending the end part of the coating layer on one tip side of the linear core material beyond the tip in the longitudinal direction of the linear core material, in which a cavity that opens in the extending direction is formed within the extending part.
摘要:
The present invention prevents substantial reduction of flow rate control accuracy in a small flow quantity range, achieves accurate flow rate control over the entire range of flow rate control, and also allows control of a wide pressure range of a chamber with accurate flow rate control. Specifically, a gas supply facility having a plurality of pressure type flow controllers connected in parallel, and a third controller to control operation of the pressure type flow controllers to supply a desired gas exhausted by a vacuum pump to a chamber while controlling its flow rate, is provided wherein one pressure type flow controller is a controller used to control a gas flow rate range up to 10% of the maximum flow rate supplied to the chamber, while the remaining pressure type flow controllers are made to be ones controlling the rest of the gas flow rate range.
摘要:
An exhaust line (15) connected to a chamber (13) comprises a TMP (22) and a dry pump (23). The chamber (13) and the TMP (22) are connected by a first exhaust pipe (25), and the TMP (22) and the dry pump (23) are connected by a second exhaust pipe (28). A measuring section (24) monitors a partial pressure of TiCl4 or NH3 in an exhaust gas flowing in the second exhaust pipe (28). Two types of process gases are alternately supplied into the chamber (13) for a predetermined time, and when the partial pressure of one of the supplied process gases in the exhaust gas is reduced to a predetermined value, a control means (12) starts supplying the other process gas.
摘要:
A method of rapidly forming a thin film of high quality through film formation by alternate feeding of raw gases. In particular, a method of forming a TiN thin film, comprising repeating operations including causing TiCl4 gas as a raw gas to be adsorbed on a substrate or TiCl4 molecules adsorbed on a substrate and feeding NH3 gas as a reactant gas in a treating chamber so as to effect reaction of TiCl4 and NH3 leading to formation of a TiN film, which method further comprises an operation of, prior to the adsorption of TiCl4 gas on the substrate, feeding reducing H2 gas in the treating chamber (30) so as to change TiCl4 to a state of enhanced likelihood of adsorption on the substrate (e.g., TiCl3).
摘要:
In a processing apparatus which performs a film deposition by alternately supplying a plurality of source gases, the source gases are prevented from reacting within an exhaust pipe so as to prevent the exhaust pipe from clogging due to a reaction by-product. A gas supply to a processing container is switched between a TiCl4 supply system and a NH3 supply system. Additionally, a gas exhaust from the processing container is switched between a TiCl4 exhaust system and a NH3 exhaust system. The gas exhaust is switched to the TiCl4 exhaust system when the gas supply is switched to the TiCl4 supply system, and the gas exhaust is switched to the NH3 exhaust system when the gas supply is switched to the NH3 supply system. The switching is performed by a stop valve provided to each of the supply system and the exhaust system.