摘要:
The present invention is directed to a method for growing a superconductive film on a superconductive substrate in order to produce a bulk single crystal. According to a preferred embodiment, an oxide superconductive film of a material which is the same or similar to the substrate material is epitaxially grown at a temperature between 450.degree. C. and 800.degree. C. so that the film and substrate have the same lattice orientations. According to the present invention, problems associated with conventional films having non-superconductor substrates (e.g., MgO and SrTiO.sub.3) are avoided.
摘要:
When a cuprate oxide LnBa.sub.2 Cu.sub.3 O.sub.7-x (Ln=Y, Pr or Sm; 0.30.ltoreq.x.ltoreq.1) single crystal is heated for growing a film epitaxially on the crystal or for smoothing a damaged surface of the single crystal, many large protrusions occur on the surface of the oxide single crystal substrate or the film. The smooth surface of the oxides becomes rugged by the protrusions. According to the present invention, however, the oxide substrate or the oxide superconductor film can be heated in an atmosphere including oxygen of a partial pressure between 50 mTorr and 200 mTorr to prevent the protrusions from originating on the surface of the heated oxides.
摘要翻译:当加热铜盐氧化物LnBa2Cu3O7-x(Ln = Y,Pr或Sm; 0.30 = x <1))单晶以在晶体上外延生长或用于平滑单晶的损伤表面时,许多 在氧化物单晶衬底或膜的表面上发生大的突起。 氧化物的光滑表面由突起变得坚固。 然而,根据本发明,氧化物基板或氧化物超导体膜可以在包括50mTorr至200mTorr之间的分压的氧的气氛中加热,以防止凸起源于加热的氧化物的表面。
摘要:
A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.
摘要:
An oxide superconducting element wire (20) comprises a base material (1), an intermediate layer (2), and an oxide superconducting thin film (3). The base material (1) being long and flexible has a cross-section in a circular or a regular polygonal form perpendicular to the longitudinal direction of the same. The periphery of the base material (1) is covered with an intermediate layer (2) and the periphery of the same is covered with an oxide superconducting thin film (3). The oxide superconducting thin film (3) has a portion in which a crystal orientation is three-axes aligned continuing in the longitudinal direction of the element wire (20).
摘要:
The present invention relates to a method of producing a substrate, including the steps of preparing a substrate having a nickel layer formed on a copper layer through plating, subjecting the nickel layer to thermal treatment at 800-1000° C., and epitaxial-growing an intermediate layer on the nickel layer, after the step of subjecting the nickel layer to thermal treatment. According to the present invention, there can be provided a substrate that allows the orientation and flatness at the surface of a nickel layer to be improved, and a method of producing the substrate.
摘要:
A method of manufacturing an oxide superconductive wire includes the step of positioning a metal tape in a position at a distance (L) of at most 100 mm from a target for generating an oxide, and the step of forming an oxide superconductive layer on the metal tape using a vapor deposition method while transferring the metal tape at a transfer speed of at least 5 m/h with keeping the distance (L) between the metal tape and the target of at most 100 mm.
摘要:
A system for coding and decoding an audio signal by using an orthogonal and inverse orthogonal transformation of a block unit, includes a coding unit having a circuit for obtaining a power level of the audio signal of a segment unit having a predetermined time interval shorter than the block unit, a circuit for generating a gain control signal from the power level, a circuit for performing a predetermined adaptive gain control responsive to the gain control signal to generate and output the adaptive gain control signal to a decoding unit, thereby performing a pre-treatment, and a coding portion for coding the adaptive gain control signal by using the orthogonal transformation to generate and output a coded signal; and the decoding unit having a decoding portion for decoding the coded signal, dequantizing and inversely and orthogonally transforming a decoded audio signal, and a circuit for performing an inverse gain control for the decoded audio signal responsive to the adaptive gain control signal from the adaptive gain control circuit to reproduce and output an audio signal, thereby performing post-treatment.
摘要:
The present invention relates to a method of producing a substrate, including the steps of preparing a substrate having a nickel layer formed on a copper layer through plating, subjecting the nickel layer to thermal treatment at 800-1000° C., and epitaxial-growing an intermediate layer on the nickel layer, after the step of subjecting the nickel layer to thermal treatment. According to the present invention, there can be provided a substrate that allows the orientation and flatness at the surface of a nickel layer to be improved, and a method of producing the substrate.
摘要:
A metal laminated substrate for an oxide superconducting wire is manufactured such that a non-magnetic metal plate T1 having a thickness of not more than 0.2 mm and a metal foil T2 made of Cu alloy which is formed by cold rolling at a draft of not less than 90% and has a thickness of not more than 50 μm is laminated to each other by room-temperature surface active bonding, after lamination, crystal of the metal foil is oriented by heat treatment at a temperature of not less than 150° C. and not more than 1000° C. and, thereafter, an epitaxial growth film T3 made of Ni or an Ni alloy having a thickness of not more than 10 μm is laminated to the metal foil.
摘要:
A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.