摘要:
The present invention relates to a method of producing a substrate, including the steps of preparing a substrate having a nickel layer formed on a copper layer through plating, subjecting the nickel layer to thermal treatment at 800-1000° C., and epitaxial-growing an intermediate layer on the nickel layer, after the step of subjecting the nickel layer to thermal treatment. According to the present invention, there can be provided a substrate that allows the orientation and flatness at the surface of a nickel layer to be improved, and a method of producing the substrate.
摘要:
The present invention relates to a method of producing a substrate, including the steps of preparing a substrate having a nickel layer formed on a copper layer through plating, subjecting the nickel layer to thermal treatment at 800-1000° C., and epitaxial-growing an intermediate layer on the nickel layer, after the step of subjecting the nickel layer to thermal treatment. According to the present invention, there can be provided a substrate that allows the orientation and flatness at the surface of a nickel layer to be improved, and a method of producing the substrate.
摘要:
A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.
摘要:
A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.
摘要:
Provided are a substrate for a superconducting compound and a method for manufacturing the substrate which can realize the excellent adhesive strength simultaneously with high orientation of copper. An absorbed material on a surface of a copper foil to which rolling is applied at a draft of 90% or more is removed by applying sputter etching to the surface of the copper foil, sputter etching is applied to a nonmagnetic metal sheet, the copper foil and the metal sheet are bonded to each other by applying a pressure to the copper foil and the metal sheet using reduction rolls, crystals of the copper in the copper foil are oriented by heating a laminated body formed by such bonding, copper is diffused into the metal sheet by heating with a copper diffusion distance of 10 nm or more, and a protective layer is laminated to a surface of the copper foil of the laminated body.
摘要:
A metal laminated substrate for an oxide superconducting wire is produced by removing, in a state where a copper foil to which rolling is applied at a draft of 90% or more is held at a temperature below a recrystallization temperature, an absorbed material on a surface of the copper foil by applying sputter etching to the surface of the copper foil; removing an absorbed material on a surface of a nonmagnetic metal sheet by applying sputter etching to the surface of the nonmagnetic metal sheet; bonding the copper foil and the metal sheet to each other by reduction rolls at an applied pressure of 300 MPa to 1500 MPa; orienting crystals of the copper by heating a laminated body obtained by bonding at a crystal orientation temperature of copper or above; and forming a protective layer on a copper-side surface of the laminated body by coating.
摘要:
A metal laminated substrate for an oxide superconducting wire is produced by removing, in a state where a copper foil to which rolling is applied at a draft of 90% or more is held at a temperature below a recrystallization temperature, an absorbed material on a surface of the copper foil by applying sputter etching to the surface of the copper foil; removing an absorbed material on a surface of a nonmagnetic metal sheet by applying sputter etching to the surface of the nonmagnetic metal sheet; bonding the copper foil and the metal sheet to each other by reduction rolls at an applied pressure of 300 MPa to 1500 MPa; orienting crystals of the copper by heating a laminated body obtained by bonding at a crystal orientation temperature of copper or above; and forming a protective layer on a copper-side surface of the laminated body by coating.
摘要:
Provided are a substrate for a superconducting compound and a method for manufacturing the substrate which can realize the excellent adhesive strength simultaneously with high orientation of copper. An absorbed material on a surface of a copper foil to which rolling is applied at a draft of 90% or more is removed by applying sputter etching to the surface of the copper foil, sputter etching is applied to a nonmagnetic metal sheet, the copper foil and the metal sheet are bonded to each other by applying a pressure to the copper foil and the metal sheet using reduction rolls, crystals of the copper in the copper foil are oriented by heating a laminated body formed by such bonding, copper is diffused into the metal sheet by heating with a copper diffusion distance of lOnm or more, and a protective layer is laminated to a surface of the copper foil of the laminated body.
摘要:
The method for producing an electrode for an electrochemical element of the present invention includes a slurry filling step of filling a slurry containing an active material into continuous pores of an aluminum porous body having the continuous pores, and a slurry drying step of drying the slurry filled, and in this method, after the slurry drying step, an electrode for an electrochemical element is produced without undergoing a compressing step of compressing the aluminum porous body having the slurry filled therein and dried. In the electrode, a mixture containing an active material is filled into continuous pores of an aluminum porous body having the continuous pores, and porosity (%) of the aluminum porous body, the porosity being represented by the following equation, is 15 to 55%. Porosity(%)={1−(volume of electrode material)/(apparent volume of electrode)}×100
摘要:
An object is to obtain a stable electric connection resistance under a mild crimping condition. The present invention is a terminal connector 12 that includes a crimp portion 30 to be crimped to an electric wire. The crimp portion 30 includes a base material, an aluminum layer or an aluminum alloy layer a surface on the base material, and a hard layer on a surface of the aluminum layer or the aluminum alloy layer. The hard layer is harder than the base material. The present invention may be an electric wire with a terminal connector 10 that includes the above terminal connector 12 and a covered electric wire 40 that includes a core wire 42 made of aluminum or aluminum alloy. The crimp portion 30 of the terminal connector 12 is crimped to the core wire 42.