摘要:
In a clean room, after conducting a surface treatment on the surface of a semiconductor substrate with 4-trimethylsiloxy-3-penten-2-one, the treated surface of the semiconductor substrate is coated with a chemically amplified resist, thereby forming a first resist film. Then, the first resist film is successively subjected to exposure, PEB and development, thereby forming a first resist pattern of the chemically amplified resist. Next, in the same clean room, after conducting a surface treatment on the surface of the semiconductor substrate with 4-dimethyl-n-hexylsiloxy-3-penten-2-one, the treated surface of the semiconductor substrate is coated with a non-chemically amplified resist, thereby forming a second resist film. Then, the second resist film is successively subjected to the exposure, the PEB and the development, thereby forming a second resist pattern of the non-chemically amplified resist.
摘要:
A surface of a semiconductor substrate of silicon is supplied with 4-trimethylsiloxy-3-penten-2-one serving as a surface treatment agent. Thus, H in OH groups existing on the surface of the semiconductor substrate is substituted with Si(CH.sub.3).sub.3 (i.e., a trimethylsilyl group), resulting in producing CH.sub.3 COCH.sub.2 COCH.sub.3 (i.e., acetylacetone). Then, the surface of the semiconductor substrate is coated with a resist, exposed by using a desired mask, and subjected successively to PEB and development, thereby forming a resist pattern thereon. Since the surface of the semiconductor substrate is treated with 4-trimethylsiloxy-3-penten-2-one, the surface of the semiconductor substrate is made to be hydrophobic, so that the adhesion of the semiconductor substrate can be improved. As a result, the resultant resist pattern has a satisfactory shape free from peeling.
摘要:
To the surface of a semiconductor substrate made of silicon, isopropenoxytrimethylsilane is supplied as a surface treating agent to render the surface of the semiconductor substrate hydrophobic and increase adhesion to the semiconductor substrate. Thus, Si(CH.sub.3).sub.3 (trimethylsilyl group) is substituted for the hydrogen atom of an OH group on the surface of the semiconductor substrate, resulting in (CH.sub.3).sub.2 CO (acetone). Subsequently, a chemically amplified resist is applied to the surface of the semiconductor substrate and exposed to light by using a desired mask, followed sequentially by PEB and development for forming a pattern. Since the surface treating agent does not generate ammonia, there can be formed a pattern in excellent configuration with no insoluble skin layer formed thereon.
摘要:
To the surface of a semiconductor substrate made of silicon, isopropenoxytrimethylsilane is supplied as a surface treating agent to render the surface of the semiconductor substrate hydrophobic and increase adhesion to the semiconductor substrate. Thus, Si(CH3)3 (trimethylsilyl group) is substituted for the hydrogen atom of an OH group on the surface of the semiconductor substrate, resulting in (CH3)2CO (acetone). Subsequently, a chemically amplified resist is applied to the surface of the semiconductor substrate and exposed to light by using a desired mask, followed sequentially by PEB and development for forming a pattern. Since the surface treating agent does not generate ammonia, there can be formed a pattern in excellent configuration with no insoluble skin layer formed thereon.
摘要:
This steel wire material contains 0.05%-1.2% C (“%” means “% by mass,” same hereinafter for chemical components.), 0.01%-0.7% Si, 0.1%-1.5% Mn, 0.02% max. P (not including 0%), 0.02% max. S (not including 0%), and 0.005% max. N (not including 0%), with the remainder being iron and unavoidable impurities. The steel wire material has a scale 6.0-20 μm thick and holes of an equivalent circle diameter of 1 μm max. in said scale that occupy 10% by area max. Said scale does not detach in the cooling process after hot rolling or during storage or transportation but can readily detach during mechanical descaling.
摘要:
After forming a lower layer film, an intermediate layer film and a first resist film on a substrate, a first resist pattern is formed by performing first exposure. Then, after a first intermediate layer pattern is formed by transferring the first resist pattern onto the intermediate layer film, a second resist film is formed thereon, and a second resist pattern is formed by performing second exposure. Thereafter, a second intermediate layer pattern is formed by transferring the second resist pattern onto the intermediate layer film. After removing the second resist film, the lower layer film is etched by using the second intermediate layer pattern as a mask, so as to form a lower layer pattern.
摘要:
A resist material includes a first polymer in which part of alkali-soluble groups are protected by an acid labile group labilized by an acid; a second polymer in which substantially all alkali-soluble groups are protected by an acid labile group labilized by an acid; and an acid generator.
摘要:
After a fluid film is formed by supplying a material with fluidity to the surface of a substrate formed with a stepped layer, the fluid film is pressed against the substrate by a pressing member having a planar pressing surface so that the surface of the fluid film is planarized. The fluid film is heated in this state and thereby solidified to form a solidified film having a planar surface.
摘要:
A water-soluble material used for forming a water-soluble film on a chemically amplified resist film includes a water-soluble polymer, an acid generator and a compound constructing an inclusion compound for incorporating the acid generator. Also, in a pattern formation method, a chemically amplified resist film is formed on a substrate, and a water-soluble film made of a water-soluble material including a water-soluble polymer, an acid generator and a compound constructing an inclusion compound for incorporating the acid generator is formed on the resist film. Thereafter, pattern exposure is carried out by selectively irradiating the resist film with exposing light through the water-soluble film, the resultant resist film is developed and the water-soluble film is removed. Thus, a resist pattern made of the resist film is formed.
摘要:
A resist protective coating material is provided comprising an α-trifluoromethylacrylic acid/norbornene copolymer having cyclic perfluoroalkyl groups as pendant. In a pattern-forming process, the material forms on a resist film a protective coating which is water-insoluble, dissolvable in alkaline developer and immiscible with the resist film, allowing for effective implementation of immersion lithography.