摘要:
A method including forming a hard mask and an etch stop layer over a sacrificial material patterned as a gate electrode, wherein a material for the hard mask and a material for the etch stop layer are selected to have a similar stress property; removing the material for the hard mask and the material for the etch stop layer sufficient to expose the sacrificial material; replacing the sacrificial material with another material. A system including a computing device including a microprocessor, the microprocessor including a plurality of transistor devices, at least one of the plurality of transistor devices including a gate electrode formed on a substrate surface; a discontinuous etch stop layer conformally formed on the substrate surface and adjacent side wall surfaces of the gate electrode; and a dielectric material conformally formed over the etch stop layer.
摘要:
A method of fabricating microelectronic structure using at least two material removal steps, such as for in a poly open polish process, is disclosed. In one embodiment, the first removal step may be chemical mechanical polishing (CMP) step utilizing a slurry with high selectivity to an interlevel dielectric layer used relative to an etch stop layer abutting a transistor gate. This allows the first CMP step to stop after contacting the etch stop layer, which results in substantially uniform “within die”, “within wafer”, and “wafer to wafer” topography. The removal step may expose a temporary component, such as a polysilicon gate within the transistor gate structure. Once the polysilicon gate is exposed other processes may be employed to produce a transistor gate having desired properties.
摘要:
An embodiment includes forming a first film over first and second portions of a SOC, the first portion including a first density of structures and the second portion including a second density of structures with the first density being denser than the second density; forming a second film over the first film; polishing the second film to remove some of the second film and form (a) a first section of the second film between sections of the first film located over the first portion, and (b) a second section of the second film between sections of the second film located over the second portion; etching the first film over the first and second portions and etching the first and second sections of the second film; and polishing the first film to expose top surfaces of the structures of the first and second portions. Other embodiments are described herein.
摘要:
The present invention describes a method for creating a differential polish rate across a semiconductor wafer. The profile or topography of the semiconductor wafer is determined by locating the high points and low points of the wafer profile. The groove pattern of a polish pad is then adjusted to optimize the polish rate with respect to the particular wafer profile. By increasing the groove depth, width, and/or density of the groove pattern of the polish pad the polish rate may be increased in the areas that correspond to the high points of the wafer profile. By decreasing the groove depth, width, and/or density of the groove pattern of the polish pad the polish rate may be decreased in the areas that correspond to the low points of the wafer profile. A combination of these effects may be desirable in order to stabilize the polish rate across the wafer surface in order to improve the planarization of the polishing process.
摘要:
The present invention describes a method for creating a differential polish rate across a semiconductor wafer. The profile or topography of the semiconductor wafer is determined by locating the high points and low points of the wafer profile. The groove pattern of a polish pad is then adjusted to optimize the polish rate with respect to the particular wafer profile. By increasing the groove depth, width, and/or density of the groove pattern of the polish pad the polish rate may be increased in the areas that correspond to the high points of the wafer profile. By decreasing the groove depth, width, and/or density of the groove pattern of the polish pad the polish rate may be decreased in the areas that correspond to the low points of the wafer profile. A combination of these effects may be desirable in order to stabilize the polish rate across the wafer surface in order to improve the planarization of the polishing process.
摘要:
A novel method and apparatus for uniformly polishing thin films formed on a semiconductor substrate. A substrate is placed face down on a moving polishing pad so that the thin film to be polished is placed in direct contact with the moving polishing pad. The substrate is forcibly pressed against the polishing pad with pneumatic or hydraulic pressure applied to the backside of the substrate during polishing. Additionally, a wear ring is placed on the polishing pad around and adjacent to the substrate and forcibly pressed onto the polishing pad with a downward pressure from a second source so that the wear ring is coplanar with the substrate in order to eliminate edge rounding effects.
摘要:
Embodiments of the present disclosure describe techniques and configurations to reduce transistor gate short defects. In one embodiment, a method includes forming a plurality of lines, wherein individual lines of the plurality of lines comprise a gate electrode material, depositing an electrically insulative material to fill regions between the individual lines and subsequent to depositing the electrically insulative material, removing a portion of at least one of the individual lines to isolate gate electrode material of a first transistor device from gate electrode material of a second transistor device. Other embodiments may be described and/or claimed.
摘要:
A novel method and apparatus for uniformly polishing thin films formed on a semiconductor substrate. A substrate is placed face down on a moving polishing pad so that the thin film to be polished is placed in direct contact with the moving polishing pad. The substrate is forcibly pressed against the polishing pad with pneumatic or hydraulic pressure applied to the backside of the substrate during polishing. Additionally, a wear ring is placed on the polishing pad around and adjacent to the substrate and forcibly pressed onto the polishing pad with a downward pressure from a second source so that the wear ring is coplanar with the substrate in order to eliminate edge rounding effects.
摘要:
An improved apparatus for polishing a thin film formed on a semiconductor substrate includes a rotatable table covered with a polishing pad. The table and the pad are then rotated relative to the substrate which is pressed down against the pad surface during the polishing process. Means is provided for generating a plurality of grooves in the pad while substrates are being polished. The continually formed grooves help to facilitate the polishing process by channeling slurry between the substrate and the pad.