Abstract:
A clutch lever arrangement for a clutch, especially for a commercial motor vehicle clutch, having a clutch lever pivotably supported on a bearing point on a stationary component. The lever has a force-application section for introducing an actuating force by way of an actuating element and a force-transmission section for transmitting the actuating force to a clutch-release bearing, which is mounted with freedom to slide axially back and forth in the pivot plane of the clutch lever. To reduce undesirable vibrations of the clutch lever, the lever is guided in its pivot plane by a guide means.
Abstract:
A clutch lever arrangement for a clutch, especially for a commercial motor vehicle clutch, having a clutch lever pivotably supported on a bearing point on a stationary component. The lever has a force-application section for introducing an actuating force by way of an actuating element and a force-transmission section for transmitting the actuating force to a clutch-release bearing, which is mounted with freedom to slide axially back and forth in the pivot plane of the clutch lever. To reduce undesirable vibrations of the clutch lever, the lever is guided in its pivot plane by a guide member.
Abstract:
An apparatus for testing of a plurality of electronic devices on a flexible substrate is described. The apparatus includes at least two rollers (110) configured for guiding the flexible substrate (10) into a testing area along transport direction, at least one prober (122) configured for electrically contacting one or more of the electronic devices, at least one probing support (124) configured for supporting a portion of the flexible substrate during electrical contact with the at least one prober, and a test device for functional testing of one or more of the electronic devices.
Abstract:
The present invention relates to a device for testing an optoelectronic module, comprising a first source for generating an electromagnetic beam or particle beam, a second source for illuminating the optoelectronic module; and a detector. In addition, a method for testing an optoelectronic module is provided comprising illuminating the optoelectronic module, directing an electromagnetic beam or particle beam and detecting defects in the optoelectronic module. The illumination additional to the electromagnetic beam or particle beam makes defects visible which otherwise would not be detected.
Abstract:
A method is provided for fastening an airbag to a motor vehicle, that includes, but is not limited to the steps of fastening an airbag, which can be filled with a gas and which has a fastening tab, to a fastening device which comprises a plate and a clip device fastened to the plate and the plate comprises a first plate section with a first opening having a screw thread and a second plate section, and the clip device is fastened on the first plate section, and the airbag is fastened to the fastening device by bending the second plate section in such a manner that the first plate section and the second plate section at least partially enclose the fastening tab on both sides. A fastening device is also provided for an airbag, an airbag, and a motor vehicle.
Abstract:
The invention relates to a method of calibration of the beam position of a corpuscular beam. A calibration body with structures is used, wherein the structures have a structure period PS in the plain section and within each structure there is a position L intended for the measurement. For the calibration, at least one detection signal each at structures in the plain section of the calibration body is generated, wherein the corpuscular beam is deflected with deflectors on beam target positions L1 with the beam target period P1, which is larger than half of the structure period PS, whereby a basic calibration is used for the control of the deflectors, and wherein the beam target deflections deviate either in the beam target period P1 from the structure period PS and/or in the beam target position L1 from the position L.
Abstract:
A method for testing a plurality of electronic devices formed on a large area substrate is described. In one embodiment, the method includes transferring a substrate on an end effector relative to a testing platform having a plurality of testing columns coupled thereto, the substrate having a plurality of electronic devices located thereon, and moving the substrate in a single directional axis relative to an optical axis of each of the plurality of testing columns, the single directional axis being substantially orthogonal to the optical axis to define a test area on the substrate, wherein the test area is configured to cover an entire length or an entire width of the substrate such that the testing columns are capable of testing the entire substrate as the substrate is moved through the test area.
Abstract:
An apparatus and method for testing large area substrates is described. The large area substrates include patterns of displays and contact points electrically coupled to the displays. The apparatus includes a prober assembly that is movable relative to the large area substrate and may be configured to test various patterns of displays and contact points. The prober assembly is also configured to test fractional sections of the large area substrate. The apparatus also includes a test chamber configured to store at least two prober assemblies within an interior volume.
Abstract:
The present invention provides a method of electron beam testing of liquid crystal displays comprising non-uniform electrodes having a conductive portion and a dielectric portion. In accordance with methods of the present invention, the diameter of the electron beam is increased so that the beam is less focused, i.e., enlarged or “blurred,” over a non-uniform electrode area. The diameter of the beam is increased so that the beam generates secondary electrons from the conductive portion of the non-uniform electrode area. The configured test beam may be circular, elliptical, or other suitable shapes.
Abstract:
A method and system for testing one or more large substrates are provided. In one or more embodiments, the system includes a testing chamber having a substrate table disposed therein. The substrate table is adapted to move a substrate within the testing chamber in various directions. More particularly, the substrate table includes a first stage movable in a first direction, and a second stage movable in a second direction, wherein each of the stages moves in an X-direction, Y-direction or both X and Y directions. The system further includes a load lock chamber at least partially disposed below the testing chamber, and a transfer chamber coupled to the load lock chamber and the testing chamber. In one or more embodiments, the transfer chamber includes a robot disposed therein which is adapted to transfer substrates between the load lock chamber and the testing chamber.