Abstract:
The invention relates to systems and methods for sensing fluid characteristics of peritoneal dialysate infused into and removed from a patient during treatment. The systems and methods include sensors, processors, and flow paths for determining patient health based on the fluid characteristics of the peritoneal dialysate. The system can be a peritoneal dialysis cycler which can include an infusion line; an effluent line; at least one pump positioned in the infusion and/or effluent line; and at least one sensor fluidly connected to the effluent line. The sensor can be at least one of a flow sensor, an ion selective electrode, a pH sensor, a pressure sensor, a refractive index sensor, and a temperature sensor. The method can include infusing peritoneal dialysate through an infusion line; removing peritoneal dialysate through an effluent line; and determining at least one fluid characteristic of the peritoneal dialysate in the effluent line.
Abstract:
The invention relates to an infusate caddy for carrying, organizing, and operating infusate containers containing solutes for preparing dialysate and related fluids for use in dialysis. The infusate containers can be seated in the infusate caddy, and the infusate containers removed from the infusate caddy for restocking, cleaning, or resupply, as needed. The infusate caddy can be positioned or seated in a receiving compartment of a dialysis machine, and can also be removed, as needed, from the dialysis machine.
Abstract:
The invention relates to fluid flow paths and fluid connectors for use with detachable containers that can be seated in an infusate caddy for use in a dialysis machine. The detachable containers can contain infusates or other solutes or materials such as disinfectants or cleaners, and can be conveniently seated in the infusate caddy. The detachable containers can be removed from the infusate caddy for restocking, cleaning, or resupply, as needed. The infusate caddy can be positioned or seated in a receiving compartment of a dialysis machine, and can also be removed, as needed. The fluid path and fluid connectors of the present invention provide the required fluid fittings, valve arrangements, pumps, and paddle assemblies for using the infusate caddy.
Abstract:
A system and method for determining the amount of fluid to be removed from a dialysis patient is disclosed. The system utilizes sensors and a computer. The computer obtains the input parameters from the sensors, along with information added directly by the user, and performs a forward algorithm to determine a recommended change in patient fluid level. As fluid is removed, the effect of the removal on the parameters is detected by the sensors and re-transmitted back to the computer. The computer then performs a backward algorithm to refine the variables used in the forward algorithm and obtain more accurate results. The system and method provide for changing the amount of fluid removed from the patient based on the results of the algorithm and the data received from the sensors.
Abstract:
The invention relates to systems and methods for optimizing a peritoneal dialysate therapy session based on one or more patient or system parameters obtained from a previous peritoneal dialysis therapy session. The systems and methods include various sensors, flow paths, and processors to adjust a peritoneal dialysis prescription for a subsequent therapy session based on data received during or after one or more previous therapy session. For example, a first peritoneal dialysis therapy session can provide data on patient or system parameters that can adjust the dialysis parameters used to deliver a subsequent peritoneal dialysis therapy session. The method can be computer implemented. The system can also include a peritoneal dialysate generation flow path.
Abstract:
The invention relates to devices, systems, and methods for priming, disinfecting, and preparing dialysate and related fluids for use in dialysis. The dialysate and related fluids can be prepared from solutes obtained from infusate containers seated in an infusate caddy. The infusate caddy can be removably positioned in a receiving compartment of a dialysis machine. Similarly, the infusate containers containing the necessary solutes for preparing the dialysate and related fluids can also be removably positioned in the infusate caddy.
Abstract:
The invention relates to systems and methods for adjusting one or more dialysis parameters for delivering a peritoneal dialysis cycle to a patient based on patient or system parameters. The systems and methods include various sensors, flow paths, and processors to adjust the dialysis parameters used to deliver peritoneal dialysis therapy, for a specific peritoneal dialysis cycle. For example, a first peritoneal dialysis cycle can provide data on patient or system parameters that can be used to adjust the dialysis parameters used to deliver a subsequent peritoneal dialysis cycle. One or more peritoneal dialysis cycles are contained in a particular peritoneal dialysis therapy session. Patient parameters can include patient blood pressure; volume of fluid removed; patient goal; blood solute level; effluent solute level; effluent temperature; effluent color or clarity; patient posture; tidal volume remaining in patient; and intraperitoneal pressure.
Abstract:
Systems and methods are provided for determining an estimated risk of arrhythmia during or after dialysis based on changes in serum potassium concentration of a patient and an amount of fluid removed from the patient during dialysis. The systems and methods allow for a determination of a risk that arrhythmia will occur due to the changes in potassium and fluid volume of a patient during dialysis, and for optimizing a dialysis prescription in order to minimize the risk of arrhythmia.
Abstract:
Systems and methods are provided for determining an estimated risk of arrhythmia during or after dialysis based on changes in serum potassium concentration of a patient and an amount of fluid removed from the patient during dialysis. The systems and methods allow for a determination of a risk that arrhythmia will occur due to the changes in potassium and fluid volume of a patient during dialysis, and for optimizing a dialysis prescription in order to minimize the risk of arrhythmia.
Abstract:
The invention relates to systems and methods for making intracycle adjustments to an osmotic agent concentration of peritoneal dialysate inside the peritoneal cavity of a patient. The systems and methods include osmotic agent sources, flow paths, and processors to adjust the osmotic agent concentration of dialysate in the peritoneal cavity of the patient. The method can include infusing peritoneal dialysate containing an osmotic agent into the peritoneal cavity of a patient; monitoring one or more patient parameters; and adjusting the osmotic agent concentration of the peritoneal dialysate in the peritoneal cavity of the patient by infusing a concentrated osmotic agent solution or by infusing sterile fluid into the peritoneal cavity of the patient using an on-line peritoneal dialysis machine. The system can include a peritoneal dialysis cycler.