摘要:
A high-energy optical beam generator providing a desired output waveform. The generator includes a master oscillator, such as a mode-locked laser, to generate an input beam, a first dispersive element to decompose the input beam into frequency components, a set of phase and amplitude modulators to modulate the frequency components individually, a set of power amplifiers to amplify the frequency components individually, and a second dispersive element to recombine the amplified and modulated frequency components into a single output beam. Phase control electronics control the modulators to provide the desired waveform for the output beam, based on its intended application and on sensed characteristics of the input beam and the output beam.
摘要:
A method is provided for forming an optical fiber amplifier. The method comprises providing a composite preform having a gain material core that includes one or more acoustic velocity varying dopants to provide a longitudinally varying acoustic velocity profile along the gain material core to suppress Stimulated Brillouin Scattering (SBS) effects by raising the SBS threshold and drawing the composite preform to form the optical fiber amplifier.
摘要:
A system and method for combining plural low power light beams into a coherent high power light beam by means of a diffractive optical element operating as both a beam combiner and beam sampler. An oscillation source transmits a master signal that is split into plural beams propagating at a common wavelength. Each beam is phase locked by a corresponding phase modulator according to a phase correction signal. The beams are directed through a fiber array to the diffractive optical element to allow efficient coherent combination of the beams at a desired diffraction order. The diffractive optical element includes a periodic sampling grating for diffracting a low power sample beam representative of the combined beam. A phase detection stage detects phases of constituent beams in the sample beam from which the phase correction signals are derived and fed back to the phase modulators. The diffractive optical element may be further modified to collimate beams diverging from the fiber array and to focus the sample beam onto a phase detector.
摘要:
A system and method for combining plural low power light beams into a coherent high power light beam by means of a diffractive optical element operating as both a beam combiner and beam sampler. An oscillation source transmits a master signal that is split into plural beams propagating at a common wavelength. Each beam is phase locked by a corresponding phase modulator according to a phase correction signal. The beams are directed through a fiber array to the diffractive optical element to allow efficient coherent combination of the beams at a desired diffraction order. The diffractive optical element includes a periodic sampling grating for diffracting a low power sample beam representative of the combined beam. A phase detection stage detects phases of constituent beams in the sample beam from which the phase correction signals are derived and fed back to the phase modulators. The diffractive optical element may be further modified to collimate beams diverging from the fiber array and to focus the sample beam onto a phase detector.
摘要:
A seed laser apparatus is disclosed. It comprises a distributed feedback laser system for transmitting a dithered optical signal having a frequency versus time characteristic that is represented by a triangular waveform and an optical medium including a plurality of optical signal paths, each path including an optical fiber and a fiber amplifier. The optical medium is characterized by stimulated Brillouin scattering (SBS) having a response time, whereby the period of the triangular waveform is equal to the round-trip transit time in the fiber or shorter than the response time of the SBS.
摘要:
A laser array architecture scalable to very high powers by closely stacking fiber amplifiers, but in which the output wavelength is selectable to be in the visible or ultraviolet region, without being restricted by the wavelengths usually inherent in the choice of fiber materials. A pump signal at a fundamental frequency is amplified in the fiber amplifier array and input to an array of nonlinear crystals that function as harmonic generators, producing an output array at a desired harmonic of the fundamental frequency. A phase detection and correction system maintains the array of outputs in phase coherency, resulting in a high power output with high beam quality, at the desired frequency. The array of nonlinear crystals may a single array to produce a second harmonic output frequency, or a combination of multiple cascaded arrays configured to produce a selected higher order harmonic frequency.
摘要:
One embodiment of the invention includes a method for forming an optical fiber. The method comprises providing a preform having a core material and a glass cladding material surrounding the core material. The method also comprises drawing the preform at a temperature that is greater than a melting temperature of the core material to form a drawn fiber. The method further comprises cooling the drawn fiber to form the optical fiber having a crystalline fiber core and a cladding that surrounds the crystalline fiber core and extends axially along a length of the crystalline fiber core.
摘要:
A laser array architecture scalable to very high powers by fiber amplifiers, but in which the output wavelength is selectable, and not restricted by the wavelengths usually inherent in the choice of fiber materials. A pump beam at a first frequency is amplified in the fiber amplifier array and is mixed with a secondary beam at a second frequency to yield a frequency difference signal from each of an array of optical parametric amplifiers. A phase detection and correction system maintains the array of outputs from the amplifiers in phase coherency, resulting in a high power output at the desired wavelength. A degenerate form of the architecture is disclosed in an alternate embodiment, and a third embodiment employs dual wavelength fiber amplifiers to obtain an output at a desired difference frequency.
摘要:
A method is provided for forming an optical fiber amplifier. The method comprises providing a composite preform having a gain material core that includes one or more acoustic velocity varying dopants to provide a longitudinally varying acoustic velocity profile along the gain material core to suppress Stimulated Brillouin Scattering (SBS) effects by raising the SBS threshold and drawing the composite preform to form the optical fiber amplifier.
摘要:
Encircled far field energy is substantially increased by modifying the near field energy distribution of radiation from each fiber in an emitting array. Each beamlet output from a fiber is modified to have a generally uniform cross-sectional energy distribution, using a pair of aspheric optical elements selected for that purpose. The optical elements may be refractive or reflective. The modified beamlets combine to form a composite output beam with a generally uniform energy distribution. Preferably, the composite beam is subject to an array-wide inverse transformation to a near-Gaussian distribution, further enhancing the encircled far field energy and providing a more efficient high power laser source. Further gains in efficiency are achieved by selecting a fiber bundle pattern, lens array pattern and lens shape that together result in a high fill factor.