摘要:
A torque control system for regulating operation of a displacement on demand engine that is operable in an activated mode and a deactivated mode includes a throttle that regulates air flow into the engine and a cam phaser that regulates a torque output of the engine. A first module determines a throttle area based on a desired deactivated manifold absolute pressure (MAP) and a desired mass air flow (MAF) and a second module determines a desired cam phaser position based on an engine speed and a transitional air per cylinder (APC) that is determined based on one of a desired deactivated APC and desired activated APC. A third module generates a throttle control signal to control the throttle based on the throttle area and a fourth module generates a cam phaser control signal to control the cam phaser based on the desired cam phaser position.
摘要:
An engine control system and method monitors torque increase during cylinder deactivation for a displacement on demand engine. A timer is started at cylinder deactivation. A controller adjusts throttle position and determines whether cylinder deactivation completes within a predetermined time. The controller adjusts throttle position based on the status of an enable condition. The controller determines if engine speed and vehicle acceleration are each within a threshold. The controller operates the throttle in a preload operating mode if the enable condition is met and operates the throttle in a normal operating mode if the enable condition is not met.
摘要:
An engine control system comprises a driver input module, a cylinder actuation module, and an active fuel management (AFM) module. The driver input module generates a fuel saver mode (FSM) signal having a first state based upon a driver input. The cylinder actuation module selectively disables at least one of a plurality of cylinders of an engine based upon a deactivation signal having a first state. The AFM module generates the deactivation signal based on at least one engine parameter and at least one threshold. The at least one threshold is modified when the FSM signal has the first state.
摘要:
An engine control system comprises a driver input module, a cylinder actuation module, and an active fuel management (AFM) module. The driver input module generates a fuel saver mode (FSM) signal having a first state based upon a driver input. The cylinder actuation module selectively disables at least one of a plurality of cylinders of an engine based upon a deactivation signal having a first state. The AFM module generates the deactivation signal based on at least one engine parameter and at least one threshold. The at least one threshold is modified when the FSM signal has the first state.
摘要:
An engine controller diagnostic system includes a cylinder identification (ID) comparison module and a synchronization diagnostic module. The cylinder ID comparison module compares a first cylinder ID associated with a first controller with a second cylinder ID associated with a second controller. The synchronization diagnostic module determines a synchronization status of the first controller based on a comparison between the first cylinder ID and the second cylinder ID.
摘要:
An oil circulating control system for an engine includes an engine speed module and a mode selection module. The engine speed module determines a speed of the engine. The mode selection module is configured to select a first pressure mode and a second pressure mode of an oil pump of the engine for the speed. The selection module selects one of the first pressure mode and the second pressure mode based on at least one mode request signal. The mode selection module signals a solenoid valve of a variable oil pressure circuit of the oil pump to transition to a first position when operating in the first pressure mode and to a second position when operating in the second pressure mode.
摘要:
An oil circulating control system for an engine includes an engine speed module and a mode selection module. The engine speed module determines a speed of the engine. The mode selection module is configured to select a first pressure mode and a second pressure mode of an oil pump of the engine for the speed. The selection module selects one of the first pressure mode and the second pressure mode based on at least one mode request signal. The mode selection module signals a solenoid valve of a variable oil pressure circuit of the oil pump to transition to a first position when operating in the first pressure mode and to a second position when operating in the second pressure mode.
摘要:
An engine controller diagnostic system includes a cylinder identification (ID) comparison module and a synchronization diagnostic module. The cylinder ID comparison module compares a first cylinder ID associated with a first controller with a second cylinder ID associated with a second controller. The synchronization diagnostic module determines a synchronization status of the first controller based on a comparison between the first cylinder ID and the second cylinder ID.
摘要:
A control system includes an oil pump module and a diagnostic module. The oil pump module, based on engine operating conditions, selectively generates a first mode request signal to initiate a first transition from operating an oil pump of an engine in one of a first pressure mode and a second pressure mode to operating the oil pump in another one of the first pressure mode and the second pressure mode. The second pressure mode is different from the first pressure mode. The diagnostic module, based on when a driver starts the engine, selectively generates a second mode request signal to initiate consecutive transitions from operating the oil pump in the second pressure mode to operating the oil pump in the first pressure mode. The diagnostic module diagnoses a pump fault when a first oil pressure change associated with the consecutive transitions is less than a first predetermined pressure change.
摘要:
A control system may include an adsorber bypass evaluation module, an adsorber bypass control module and an engine operation control module. The adsorber bypass evaluation module may evaluate a bypass closing criterion of a hydrocarbon adsorber bypass passage in an engine exhaust gas treatment device after an engine key-on condition. The adsorber bypass control module may be in communication with the adsorber bypass evaluation module and may close the hydrocarbon adsorber bypass passage after the key-on condition when the bypass closing criterion meets a predetermined condition. The engine operation control module may be in communication with the adsorber bypass control module and may start the engine after the closing.