摘要:
A ceramic circuit structure comprising a plurality of ceramic layers and at least one electronic component embedded within the plurality of ceramic layers. Within a first one of the ceramic layers is a via that passes through the ceramic layer. A contact pad is formed on a surface of the ceramic layer. A barrier cap is formed between the via and the contact pad. A dielectric ring covers a peripheral portion of the contact pad and an adjacent portion of the dielectric material layer surface immediately surrounding the contact pad, such that any solder that is applied to the contact does not contact the peripheral portion of the contact pad or the ceramic material.
摘要:
A ceramic circuit structure comprising a plurality of ceramic layers and at least one electronic component embedded within the plurality of ceramic layers. Within a first one of the ceramic layers is a via that passes through the ceramic layer. A contact pad is formed on a surface of the ceramic layer. A barrier cap is formed between the via and the contact pad. A dielectric ring covers a peripheral portion of the contact pad and an adjacent portion of the dielectric material layer surface immediately surrounding the contact pad, such that any solder that is applied to the contact does not contact the peripheral portion of the contact pad or the ceramic material.
摘要:
Disclosed is a packaged integrated circuit device. The device includes a die having a plurality of electrical contacts on a first surface of the die and a protective film adhered directly to a back surface of the die, the protective film being thick enough to allow laser marking of the protective film without the laser penetrating to the die. In one preferred embodiment, the protective film of the device is a thick film formed by screen printing. In a preferred embodiment, the protective film has a thickness of between about 1.5 and 5 mils. Also, disclosed is a method of fabricating a semiconductor wafer having a wafer substrate with a top surface and a bottom surface and a plurality of dies. In this embodiment, the method includes providing a plurality of dies on the top surface of the wafer substrate, applying a thick film over the bottom surface of the wafer substrate, adhering the thick film to a mounting tape that is not ultraviolet curable, and dicing the wafer to separate the dies. The thick film reduces chipping along edges of the separated dies.
摘要:
Disclosed is a packaged integrated circuit device. The device includes a die having a plurality of electrical contacts on a first surface of the die and a protective film adhered directly to a back surface of the die, the protective film being thick enough to allow laser marking of the protective film without the laser penetrating to the die. In one preferred embodiment, the protective film of the device is a thick film formed by screen printing. In a preferred embodiment, the protective film has a thickness of between about 1.5 and 5 mils. Also, disclosed is a method of fabricating a semiconductor wafer having a wafer substrate with a top surface and a bottom surface and a plurality of dies. In this embodiment, the method includes providing a plurality of dies on the top surface of the wafer substrate, applying a thick film over the bottom surface of the wafer substrate, adhering the thick film to a mounting tape that is not ultraviolet curable, and dicing the wafer to separate the dies. The thick film reduces chipping along edges of the separated dies.
摘要:
Disclosed is an IC package. The IC package includes a die having a plurality of conductive pads. A passivation layer is formed over the conductive pads such that the passivation layer has a plurality of passivation vias. Each passivation via is positioned over an associated one of the conductive pads. A resilient protective layer is formed over the passivation layer. The resilient protective layer has a plurality of resilient vias, wherein each resilient via is associated with an associated passivation via. A plurality of under bump pads are in electrical contact with the conductive pads, and each under bump pad is associated with one of the resilient vias. A plurality of contact bumps are formed over the plurality of under bump pads such that each one of the contact bumps is electrically coupled with a selected one of the under bump pads and such that each contact bump is electrically coupled with a selected one of the conductive pads. The resilient protective layer is arranged to absorb stresses introduced at the contact bumps when the IC package is attached to an external substrate; the contact bumps are formed from a material that facilitates absorption of stresses by the resilient protective layer, and the resilient protective layer is further arranged to protect the die. In one preferred embodiment, each under bump pad includes a lip that extends over a portion of the resilient layer. In another preferred embodiment, the contact bumps are formed from a eutectic tin-lead alloy. In another embodiment, a circuit board is disclosed. The circuit board includes a substrate having a plurality of board contacts and the IC package as recited above. In this embodiment, the IC package is attached to the substrate such that each of the contact bumps is coupled with an associated one of the board contacts. In a preferred embodiment, the resilient protective layer of the IC package absorbs stresses introduced at the contact bumps such that an underfill layer is not required between the IC package and the substrate.
摘要:
Disclosed is a packaged integrated circuit device. The device includes a die having a plurality of electrical contacts on a first surface of the die and a protective film adhered directly to a back surface of the die, the protective film being thick enough to allow laser marking of the protective film without the laser penetrating to the die. In one preferred embodiment, the protective film of the device is a thick film formed by screen printing. In a preferred embodiment, the protective film has a thickness of between about 1.5 and 5 mils. Also, disclosed is a method of fabricating a semiconductor wafer having a wafer substrate with a top surface and a bottom surface and a plurality of dies. In this embodiment, the method includes providing a plurality of dies on the top surface of the wafer substrate, applying a thick film over the bottom surface of the wafer substrate, adhering the thick film to a mounting tape that is not ultraviolet curable, and dicing the wafer to separate the dies. The thick film reduces chipping along edges of the separated dies.