Abstract:
An apparatus for winding at least partially structured metal foils into a honeycomb structure includes at least one wrap-around mandrel in a central region of the apparatus having a receiving part for at least one metal foil, at least one shaping segment having at least one guide element for guiding the at least one metal foil during winding, and at least one pivotable clamping jaw. The at least one guide element has at least one roll body. A process for producing a honeycomb body, especially a large honeycomb body, with at least partially structured metal foils, a honeycomb structure produced by the apparatus or the process and a vehicle having the honeycomb structure, are also provided.
Abstract:
A Handheld Diagnostic Interface Device (HDID) that includes means for connecting the Handheld Diagnostic Interface Device (HDID) to a frequency-testing power source, said Handheld Diagnostic Interface Device (HDID) adapted for: (a) measuring the status of certain key electrical conditions for the coil; (b) receiving a response back from the signals initially aimed at the coil in question; (c) processing those responses received; and (d) transferring the measured electronic status (using a specific code number for the coil) to a remote storage area on the internet. A method of use is also disclosed.
Abstract:
A method for generating openings in a metal foil includes at least the following steps: a) providing a planar metal foil, b) generating bends defining extrema in the metal foil, and c) generating at least one opening in the vicinity of the bends through the use of a cutting production process forming chips including simultaneously cutting a plurality of adjacent extrema of the metal foil by using grinding tools.
Abstract:
A self-supporting mount for exhaust gas purification modules includes at least two retaining plates. The exhaust gas purification modules each have a cross sectional shape and at least one bead projecting beyond the main cross sectional shape and having a thickness. At least two of the exhaust gas purification modules pass at least partially through at least one of the retaining plates and are each fixed between the at least two retaining plates through the use of the bead. An exhaust system for a motor vehicle having at least one self-supporting mount, is also provided.
Abstract:
A method for manufacturing a metal structure in which the metal structure has separate walls forming channels through which a fluid can flow includes at least partially wetting the walls inside the channels with an adhesive, bringing the metal structure into contact with a solder that adheres to the adhesive, and carrying out a heat treatment to form soldered connections between the separate walls. The method is distinguished by the fact that the dosed delivery of the adhesive is performed by at least one dosing element having a honeycomb configuration and having an inlet side (8) and an outlet side, the element being connected to the adhesive. The adhesive enters the dosing element through the inlet side and is uniformly distributed into the channels through the outlet side. The invention also includes a device for wetting the metal structure with the adhesive.
Abstract:
A method for producing multiple structured sheet metal foils includes the steps of A) reshaping the sheet metal foil to produce a primary structure having a first primary structure width; B) reshaping the sheet metal foil having the primary structure to produce a secondary structure; and C) reshaping the structured sheet metal foil to produce a second primary structure width being smaller than the first primary structure width. A method for producing a metal honeycomb body, a catalyst carrier body having multiple structured sheet metal foils for exhaust gas purification and a tool for producing multiple structured sheet metal foils, are also provided.
Abstract:
A honeycomb body includes two opposite end sides, at least one housing and at least one metallic layer forming channels. At least one of the end sides has at least one brazed zone forming a belt-shaped, brazing material-free zone adjacent the housing. A method for producing the honeycomb body, an exhaust-gas treatment component for an internal combustion engine and a motor vehicle having the honeycomb body, are also provided.
Abstract:
A honeycomb structure includes a plurality of substantially parallel channels, a layer of at least partially structured metal foils and a housing. The layer includes a number N of at least partially structured metal foils and a number N+1 of smooth metal foils. The number N=1, 2 or 3 and two of the smooth metal foils are exterior foils. A method for producing such a honeycomb structure is also provided. The honeycomb structure is used, in particular in exhaust gas systems of mobile internal combustion engines.
Abstract:
A sheet-metal layer includes anti-diffusion structures made of a high-temperature-corrosion-resistant steel having a longitudinal direction, upper and lower surfaces, a thickness of 0.015 to 0.1 mm and discontinuous microstructures extending approximately in the longitudinal direction. The microstructures have a structure height (0.02 to 0.1 mm), a structure length (2 to 10 mm), a structure width (0.2 to 1 mm), a longitudinal spacing (greater than 2 mm), formed by interruptions, from the nearest microstructure aligned approximately in the longitudinal direction and a lateral distance (1 to 10 mm) from the nearest laterally adjacent microstructure. Some of the microstructures project out of the sheet-metal layer toward the upper surface and some toward the lower surface. The microstructures cause each straight theoretical line extending across the sheet-metal layer perpendicularly to the longitudinal direction to intersect at least two microstructures projecting toward the upper surface and two microstructures projecting toward the lower surface.
Abstract:
A catalyst carrier body includes at least one housing, a honeycomb body and a passivation layer which includes a multiplicity of separate crystal agglomerations with an averaged height lying in the range of 0.3 to 1.5 μm. Various production methods are proposed which are suitable, in particular, for producing such catalyst carrier bodies. Thus, the formation of the passivation layer takes place by the blending and/or mixing of an adhesive with a passivating substance and subsequently applying the adhesive, or by roughening a region using a blast-cutting manufacturing method with corundum particles being employed as the blasting medium. A barrier is thereby provided in a very simple and cost-effective way which, for example during the formation of brazed connections, prevents the then liquid brazing material from being distributed beyond the desired tying regions as a result of capillary effects.