Abstract:
Permanent or temporary alignment and/or retention structures for receiving multiple components are provided. The structures are preferably formed monolithically via a plurality of deposition operations (e.g. electrodeposition operations). The structures typically include two or more positioning fixtures that control or aid in the positioning of components relative to one another, such features may include (1) positioning guides or stops that fix or at least partially limit the positioning of components in one or more orientations or directions, (2) retention elements that hold positioned components in desired orientations or locations, and/or (3) positioning and/or retention elements that receive and hold adjustment modules into which components can be fixed and which in turn can be used for fine adjustments of position and/or orientation of the components.
Abstract:
Treatment of substrates, formation of structures, and formation of multilayer structures using contact masks are disclosed where a non-parallel or non-simultaneous mating of various mask contact surfaces to a substrate surface occurs. Some embodiments involve bringing a relative planar mask contact surface and a relative planar substrate surface together at a small angle (but larger than an alignment tolerance associated with the system). Some embodiments involve flexing a mask to make it non-planar and bringing it into contact with a substrate such that progressively more contact between the mask and substrate occur until complete mating is achieved. Some embodiments involve use of gas or liquid pressure to bow a flexible or semi-flexible mask and use a linear actuator to bring the mating surfaces together and to bring the mask into a more planar configuration.
Abstract:
Electrochemical Fabrication techniques are used to modify substrates or to form multilayer structures (e.g. components or devices) from a plurality of overlaying and adhered layers. Masks are used to selectively etch or deposit material. Some masks may be of the contact type and may be formed of multiple materials some of which may be support materials, some of which may be mating materials for contacting a substrate and some may be intermediate materials. In some embodiments the contact masks may have conformable contact surfaces (i.e. surfaces with sufficient flexibility or deformability that they can substantially conform to surface of the substrate to form a seal with it) or they may have semi-rigid or even rigid surfaces. In embodiments where masks are used for selective deposition operations, etching operations may be performed after deposition to remove flash deposits (thin undesired deposits from areas that were intended to be masked).
Abstract:
Various embodiments of the invention present techniques for forming structures via a combined electrochemical fabrication process and a thermal spraying process or powder deposition processes. In a first set of embodiments, selective deposition occurs via masking processes (e.g. a contact masking process or adhered mask process) and thermal spraying or powder deposition is used in blanket deposition processes to fill in voids left by selective deposition processes. In a second set of embodiments, after selective deposition of a first material, a second material is blanket deposited to fill in the voids, the two depositions are planarized to a common level and then a portion of the first or second materials is removed (e.g. by etching) and a third material is sprayed into the voids left by the etching operation. In both embodiments the resulting depositions are planarized to a desired layer thickness in preparation for adding additional layers.
Abstract:
Disclosed methods reduce the discontinuities that between individual layers of a structure that is formed at least in part using electrochemical fabrication techniques. Discontinuities may exist between layers of a structure as a result of up-facing or down-facing regions defined in data descriptive of the structure or they may exist as a result of building limitations, e.g., those that result in non-parallel orientation between a building axis and sidewall surfaces of layers. Methods for reducing discontinuities may be applied to all regions or only to selected regions of the structure. Methods may be tailored to improve the accuracy between an original design of the structure and the structure as fabricated or they may simply be used to smooth the discontinuities between layers. Methods may include deposition operations that selectively favor filling of the discontinuities and/or etching operations that selectively favor removal of material from protrusions that define discontinuities.
Abstract:
Multilayer structures are electrochemically fabricated via depositions of one or more materials in a plurality of overlaying and adhered layers. Selectivity of deposition is obtained via a multi-cell controllable mask. Alternatively, net selective deposition is obtained via a blanket deposition and a selective removal of material via a multi-cell mask. Individual cells of the mask may contain electrodes comprising depositable material or electrodes capable of receiving etched material from a substrate. Alternatively, individual cells may include passages that allow or inhibit ion flow between a substrate and an external electrode and that include electrodes or other control elements that can be used to selectively allow or inhibit ion flow and thus inhibit significant deposition or etching. Single cell masks having a cell size that is smaller or equal to the desired deposition resolution may also be used to form structures.