摘要:
The present invention relates to a method for expressing each of peptide antibiotics P5 3 and Anal3 35 having amphiphilicity and showing antibacterial, antifungal and anticancer activities 61, 63, 65, 67, 69, 71, on the microbial surface, using a vector containing outer membrane protein genes (pgsBCA) that are derived from Bacillus sp. strains and involved in the synthesis of poly-gamma-glutamate. Moreover, the present invention relates to lactic acid-forming bacteria having each of the peptide antibiotics P5 15 and Anal3 43 expressed on their surface, and the use thereof. According to the present invention, the peptide antibiotics can be expressed on the surface of various microorganisms transformed with the surface expression vectors. The inventive method for the surface expression of the peptide antibiotics allows the peptide antibiotics to be mass-produced without a purification process. Thus, the inventive method has very high industrial applicability. Further, the present invention can be applied to other peptide antibiotics besides P5 3 and Anal3 35.
摘要:
The present invention relates to a method for expressing each of peptide antibiotics P5 3 and Anal3 35 having amphiphilicity and showing antibacterial, antifungal and anticancer activities 61, 63, 65, 67, 69, 71, on the microbial surface, using a vector containing outer membrane protein genes (pgsBCA) that are derived from Bacillus sp. strains and involved in the synthesis of poly-gamma-glutamate. Moreover, the present invention relates to lactic acid-forming bacteria having each of the peptide antibiotics P5 15 and Anal3 43 expressed on their surface, and the use thereof. According to the present invention, the peptide antibiotics can be expressed on the surface of various microorganisms transformed with the surface expression vectors. The inventive method for the surface expression of the peptide antibiotics allows the peptide antibiotics to be mass-produced without a purification process. Thus, the inventive method has very high industrial applicability. Further, the present invention can be applied to other peptide antibiotics besides P5 3 and Anal3 35.
摘要:
The present invention relates to a method for expressing each of peptide antibiotics P5 3 and Anal3 35 having amphiphilicity and showing antibacterial, antifungal and anticancer activities 61, 63, 65, 67, 69, 71, on the microbial surface, using a vector containing outer membrane protein genes (pgsBCA) that are derived from Bacillus sp. strains and involved in the synthesis of poly-gamma-glutamate. Moreover, the present invention relates to lactic acid-forming bacteria having each of the peptide antibiotics P5 15 and Anal3 43 expressed on their surface, and the use thereof. According to the present invention, the peptide antibiotics can be expressed on the surface of various microorganisms transformed with the surface expression vectors. The inventive method for the surface expression of the peptide antibiotics allows the peptide antibiotics to be mass-produced without a purification process. Thus, the inventive method has very high industrial applicability. Further, the present invention can be applied to other peptide antibiotics besides P5 3 and Anal 3 35.
摘要:
The present invention relates to a method for expressing each of peptide antibiotics P5 3 and Ana13 35 having amphiphilicity and showing antibacterial, antifungal and anticancer activities 61, 63, 65, 67, 69, 71, on the microbial surface, using a vector containing outer membrane protein genes (pgsBCA) that are derived from Bacillus sp. strains and involved in the synthesis of poly-gamma-glutamate. Moreover, the present invention relates to lactic acid-forming bacteria having each of the peptide antibiotics P5 15 and Ana13 43 expressed on their surface, and the use thereof.According to the present invention, the peptide antibiotics can be expressed on the surface of various microorganisms transformed with the surface expression vectors. The inventive method for the surface expression of the peptide antibiotics allows the peptide antibiotics to be mass-produced without a purification process. Thus, the inventive method has very high industrial applicability. Further, the present invention can be applied to other peptide antibiotics besides P5 3 and Ana13 35.
摘要:
The present invention relates to a surface expression vector of SARS coronavirus antigen containing a gene encoding an antigen of SARS inducing coronavirus and any one or two or more of genes pgsB, pgsC and pgsA encoding poly-gamma-glutamic acid synthase complex, a microorganism transformed by the surface expression vector, and a SARS vaccine comprising the microorganism. According to the present invention, it is possible to economically produce a vaccine for prevention and treatment of SARS using a recombinant strain expressing an SARS coronavirus antigen on their surface.
摘要:
Expression vectors that can efficiently produce virion capsid protein, tumor-associated protein of human papillomavirus on a microbial surface. Bacterial strains harboring such surface display vectors, and the use of the bacterial strains or their extracts or purified products as complex vaccines, are also described. The surface display vectors contain one or more than two genes selected from among pgsB, pgsC and pgsA, encoding a poly-χ-glutamic acid synthetase complex (pgsBCA) of a Bacillus sp. strain, and genes that encode virion capsid proteins, tumor-associated proteins of human papillomavirus. Methods for preparing the foregoing vectors, vaccines and transformed microorganisms are also described.
摘要:
The present invention relates to a surface expression vector having pgsBCA, a gene coding poly-gamma-glutamate synthetase and a method for expression of target protein at the surface of microorganism using the vector. The vector, in which foreign genes are inserted, transforms microorganisms and makes foreign proteins expressed stably on the surface of microorganisms.
摘要:
The present invention relates to a composition for an immunopotentiator (adjuvant) containing poly-gamma-glutamic acid and a composition for a vaccine containing the immunopotentiator, and more particularly, to an immunopotentiator containing poly-gamma-glutamic acid capable of enhancing antibody production rate by administering it to an animal together with antigen having low immunogenicity, and a composition for a vaccine containing the immunopotentiator and antigen. The inventive adjuvant has almost no toxicity and side effects, and show high antibody titer even when it is used with antigen having poor immunogenicity, so it can be used by adding to medical composition including preventive or curative vaccine for non-contagious chronic diseases as well as cancer, especially prostatic carcinoma, colon carcinoma, lung cancer, breast cancer, ovarian cancer, head and neck cancer, pudendum cancer, bladder cancer, brain tumor and glioma.
摘要:
Expression vectors that can efficiently produce virion capsid protein, tumor-associated protein of human papillomavirus on a microbial surface. Bacterial strains harboring such surface display vectors, and the use of the bacterial strains or their extracts or purified products as complex vaccines, are also described. The surface display vectors contain one or more than two genes selected from among pgsB, pgsC and pgsA, encoding a poly-χ-glutamic acid synthetase complex (pgsBCA) of a Bacillus sp. strain, and genes that encode virion capsid proteins, tumor-associated proteins of human papillomavirus. Methods for preparing the foregoing vectors, vaccines and transformed microorganisms are also described.
摘要:
Expression vectors are described that can efficiently produce virion capsid protein, tumor-associated protein of human papillomavirus on a microbial surface. Bacterial strains harboring such surface display vectors, and the use of the bacterial strains or their extracts or purified products as complex vaccines, are also described. The surface display vectors contain one or more than two genes selected from among pgsB, pgsC and pgsA, encoding a poly-χ-glutamic acid synthetase complex (pgsBCA) of a Bacillus sp. strain, and genes that encode virion capsid proteins, tumor-associated proteins of human papillomavirus, Methodology for preparing the foregoing vectors, vaccines and transformed microorganisms are also described.