摘要:
A semiconductor device includes a semiconductor element. A silicon nitride film covers the semiconductor element. The silicon nitride film is made of Si.sub.X N.sub.Y H.sub.Z, where X, Y, and Z denote atomic fractions of Si, N, and H respectively. The silicon nitride film relates to an optical absorption edge wavelength shorter than 254 nm. A mean area of regions surrounded by crystal-like grain boundaries at a surface of the silicon nitride film is equal to 4.5.times.10.sup.4 nm.sup.2 or more. The semiconductor element may include a memory element from which information can be erased by exposure to ultraviolet rays.
摘要:
A semiconductor device includes a semiconductor element. A silicon nitride film covers the semiconductor element. The silicon nitride film is made of Si.sub.X N.sub.Y H.sub.Z, where X, Y, and Z denote atomic fractions of Si, N, and H resptively. The silicon nitride film relates to an optical absorption edge wavelength shorter than 254 nm. A mean area of regions surrounded by crystal-like grain boundaries at a surface of the silicon nitride film is equal to 4.5.times.10.sup.4 nm.sup.2 or more. The semiconductor element may include a memory element from which information can be erased by exposure to ultraviolet rays.
摘要:
The present invention provides an insulated gate semiconductor device which has floating regions around the bottoms of trenches and which is capable of reliably achieving a high withstand voltage. An insulated gate semiconductor device 100 includes a cell area through which current flows and an terminal area which surrounds the cell area. The semiconductor device 100 also has a plurality of gate trenches 21 in the cell area and a plurality of terminal trenches 62 in the terminal area. The gate trenches 21 are formed in a striped shape, and the terminal trenches 62 are formed concentrically. In the semiconductor device 100, the gate trenches 21 and the terminal trenches 62 are positioned in a manner that spacings between the ends of the gate trenches 21 and the side of the terminal trench 62 are uniform. That is, the length of the gate trenches 21 is adjusted according to the curvature of the corners of the terminal trench 62.
摘要:
The device includes: a runner block arranged at a position close to the injection port for resin material for secondary forming; and a slide core moved relatively with the runner block. In the runner block, a guide passage is formed which is communicated with a passage formed when pipe-shaped passages of the primary moldings are butted against each other. A heating medium passage or a resin material passage formed in the slide core are moved so that either the heating medium passage or the resin material passage can be selectively communicated with the guide passage formed in the runner block.
摘要:
A trench-gate type transistor has a gate insulating film formed on an inner wall of a trench. The gate insulating film includes a first portion located on a wall of the trench and a second portion located on upper and bottom portions of the trench. The first portion includes a first oxide film, a nitride film, and a second oxide film. The second portion includes only an oxide film and is thicker than the first portion. Accordingly, electric field concentration on upper and lower corner portions of the trench can be reduced to improve the withstand voltage. In addition, and end of the trench may have an insulation layer that is thicker than the first portion.
摘要:
A gate oxide film is formed on a surface of a semiconductor substrate. A tunnel insulating film having a thickness smaller than that of the gate insulating film is formed in a portion thereof corresponding to a tunnel region. A first silicon film having a low impurity concentration is formed on the gate insulating film. A second silicon film having an impurity concentration higher than that of the first silicon film is formed on the first silicon film so as to be connected thereto. A third silicon film is formed on the second silicon film through an insulating film. The second and third silicon films are formed into floating and control gates, respectively, thereby forming a semiconductor memory device.
摘要:
A method fabricates a semiconductor device having a sidewall made from an insulation film at each side of a gate electrode portion. The method forms a polysilicon gate electrode (11a) on a gate oxide film (10) in a predetermined region on an n.sup.- epitaxial layer (2). A CVD silicon oxide film (15) having a predetermined thickness is formed over the polysilicon gate electrode material (11a) on the n.sup.- epitaxial layer (2). A magnetron enhanced reactive ion etching apparatus is used to etch the CVD silicon oxide film (15) while pouring a CHF.sub.3 gas made by coupling carbon, hydrogen, and fluorine and an N.sub.2 gas onto the etched material, such that the CVD silicon oxide film (15) is left only at each side of the polysilicon gate electrode material (11a), to form a sidewall (16). To avoid electrodes of the magnetron enhanced reactive ion etching apparatus from staining, CHF.sub.3 /He/N.sub.2 /O.sub.2 may be used for etching.
摘要翻译:一种制造半导体器件,其具有由栅电极部分的每一侧由绝缘膜制成的侧壁。 该方法在n型外延层(2)上的预定区域中的栅极氧化膜(10)上形成多晶硅栅电极(11a)。 在n外延层(2)上的多晶硅栅电极材料(11a)上形成具有预定厚度的CVD氧化硅膜(15)。 使用磁控增强反应离子蚀刻装置来蚀刻CVD氧化硅膜(15),同时将通过将碳,氢和氟与N 2气体偶合而形成的CHF 3气体倒入到蚀刻材料上,使得CVD氧化硅膜( 15)仅留在多晶硅栅电极材料(11a)的每一侧,以形成侧壁(16)。 为了避免磁控管增强反应离子蚀刻装置的电极染色,可以使用CHF 3 / He / N 2 / O 2进行蚀刻。
摘要:
A power DMOS semiconductor device providing improved current detection accuracy can be produced using standard pocessess. The device includes main wells, subwells and a line well which is independent of the main wells and subwells. These wells are formed by doping the surface of a semiconductor substrate with well-forming impurities. The line well surrounds the subwells at a predetermined distance away from the subwells to relax an electric field on the surface of the substrate. Gate electrodes are patterned to form a line opening which surrounds the subwells. The line opening serves as a mask when forming the line well by doping the surface of the substrate with the well-forming impurities. Accordingly, the width of a region between the line well and an adjacent subwell will not fluctuate.
摘要:
A tunnel insulating film of a three-layer structure, wherein an oxide film is interposed between nitrided oxide films, is formed on the surface of a semiconductor substrate. A first polysilicon film serving as a low-concentration impurity region is formed on the tunnel insulating film. An oxide film is formed on that region of the first polysilicon film, which corresponds to the tunnel insulating film, the oxide film having such a thickness that the film can serve as a stopper for impurity diffusion and can allow electrons to pass through. A second polysilicon film, having an impurity concentration higher than that of the first polysilicon film, is formed on the oxide film. The first and second polysilicon films constitute a floating gate. A third polysilicon film serving as a control gate is formed above the second polysilicon film, with an insulating layer interposed therebetween.
摘要:
A gate oxide film is formed on a surface of a semiconductor substrate. A tunnel insulating film having a thickness smaller than that of the gate insulating film is formed in a portion thereof corresponding to a tunnel region. A first silicon film having a low impurity concentration is formed on the gate insulating film. A second silicon film having an impurity concentration higher than that of the first silicon film is formed on the first silicon film so as to be connected thereto. A third silicon film is formed on the second silicon film through an insulating film. The second and third silicon films are formed into floating and control gates, respectively, thereby forming a semiconductor memory device.