Abstract:
An electronic component comprising a glass body containing a photosensitizer; a conductor as at least a part of an electric element, arranged on the glass body; a terminal electrode as a terminal of the electric element, arranged above an outer surface of the glass body, with the terminal electrode being electrically connected to the conductor; and an insulating film arranged above the outer surface of the glass body. The insulating film reflects or absorbs light in a photosensitive wavelength range of the photosensitizer contained in the glass body.
Abstract:
A piezoelectric thin film contains potassium sodium niobate represented by general formula (K1-xNax)NbO3 and CaTiO3, wherein the lattice spacing calculated from the diffraction peak of the (001) plane in an X-ray diffraction profile of the piezoelectric thin film is 3.975 Å or less, and the ratio I101/I001 of the diffraction peak intensity I101 of the (101) plane to the diffraction peak intensity I001 of the (001) plane in the X-ray diffraction profile of the piezoelectric thin film 3 satisfies the relationship log10(I101/I001)≦−2.10.
Abstract:
A piezoelectric thin film does not easily generate a heterogeneous phase and exhibits good piezoelectric characteristics. The piezoelectric thin film contains a composition represented by a general formula: (1-n) (K1-xNax)mNbO3-nCaTiO3, wherein m, n, and x in the general formula are within the ranges of 0.87≦m≦0.97, 0≦n≦0.065, and 0≦x≦1.
Abstract:
A piezoelectric device that includes a piezoelectric film, which is formed by a sputtering method and which has a columnar structure, and electrodes disposed in contact with the piezoelectric film. The piezoelectric film has a composition containing an element which can substitute Nb and has an oxidation number of 2 or more and less than 5 when oxidized in a proportion of 3.3 mol or less relative to 100 mol of potassium sodium niobate represented by a general formula (K1-xNax)NbO3, where 0
Abstract:
An electronic component includes a single-layer glass plate, an outer-surface conductor that is disposed above an outer surface of the single-layer glass plate and that is at least a part of an electrical element, and a terminal electrode that is a terminal of the electrical element. The terminal electrode is disposed above the outer surface of the single-layer glass plate and being electrically connected to the outer-surface conductor.
Abstract:
A piezoelectric thin film contains potassium sodium niobate represented by general formula (K1-xNax)NbO3 and CaTiO3, wherein the lattice spacing calculated from the diffraction peak of the (001) plane in an X-ray diffraction profile of the piezoelectric thin film is 3.975 Å or less, and the ratio I101/I001 of the diffraction peak intensity I101 of the (101) plane to the diffraction peak intensity I001 of the (001) plane in the X-ray diffraction profile of the piezoelectric thin film 3 satisfies the relationship log10(I101/I001)≤−2.10.
Abstract:
A piezoelectric thin film does not easily generate a heterogeneous phase and exhibits good piezoelectric characteristics. The piezoelectric thin film contains a composition represented by a general formula: (1-n) (K1-xNax)mNbO3-nCaTiO3, wherein m, n, and x in the general formula are within the ranges of 0.87≤m≤0.97, 0≤n≤0.065, and 0≤x≤1.