摘要:
An automatic high-precision layer cutting device for separating a layer from a semiconductor substrate. The device includes a fixed positioning member for receiving at least a portion of a semiconductor substrate that has a weakened area therein and a peripheral annular notch located below the weakened area. The positioning member maintains the position of the substrate on a moveable support. A cutting mechanism having at least one blade is provided for contacting the substrate and inducing a cleaving wave therein. The cutting mechanism is operatively associated with the positioning member so that the as at least one blade contacts the annular notch, the positioning member prevents movement of the substrate and the moveable support moves away from the substrate to allow the cleaving wave to both divide the substrate at the notch into first and second parts and detach the layer from the substrate along the weakened area.
摘要:
An automatic high-precision layer cutting device for separating a layer from a semiconductor substrate. The cutting device includes a fixed positioning member for receiving at least a portion of a semiconductor substrate that has a weakened area therein and a peripheral annular notch that is located below the weakened area. The positioning member maintains a predetermined position of the substrate on a support. The device also includes cutting means having at least one blade for contacting the substrate and for inducing a cleaving wave into the substrate. The cutting means is operatively associated with the positioning member so that the at least one blade contacts the annular notch and the positioning member prevents movement of the substrate. The at least one blade induces a cleaving wave of sufficient intensity to both divide the substrate at the notch into first and second parts and detach the layer from the substrate along the weakened area.
摘要:
An automatic high-precision layer cutting device for separating a layer from a semiconductor substrate. The device includes a fixed positioning member for receiving at least a portion of a semiconductor substrate that has a weakened area therein and a peripheral annular notch located below the weakened area. The positioning member maintains the position of the substrate on a moveable support. A cutting mechanism having at least one blade is provided for contacting the substrate and inducing a cleaving wave therein. The cutting mechanism is operatively associated with the positioning member so that the as at least one blade contacts the annular notch, the positioning member prevents movement of the substrate and the moveable support moves away from the substrate to allow the cleaving wave to both divide the substrate at the notch into first and second parts and detach the layer from the substrate along the weakened area.
摘要:
The invention relates to a process for annealing a structure that includes at least one wafer, with the annealing process including conducting a first annealing of the structure in an oxidizing atmosphere while holding the structure in contact with a holder in a first position in order to oxidize at least portion of the exposed surface of the structure, shifting the structure on the holder into a second position in which non-oxidized regions of the structure are exposed, and conducting a second annealing of the structure in an oxidizing atmosphere while holding the structure in the second position. The process provides an oxide layer on the structure.
摘要:
The invention relates to a process for annealing a structure that includes at least one wafer, with the annealing process including conducting a first annealing of the structure in an oxidizing atmosphere while holding the structure in contact with a holder in a first position in order to oxidize at least portion of the exposed surface of the structure, shifting the structure on the holder into a second position in which non-oxidized regions of the structure are exposed, and conducting a second annealing of the structure in an oxidizing atmosphere while holding the structure in the second position. The process provides an oxide layer on the structure.
摘要:
A process for treating substrates for the microelectronics or optoelectronics industry, wherein the substrates include on at least one of their faces a working layer in which components are intended to be formed. The process includes a step of annealing under a reductive atmosphere followed by a step of chemical-mechanical polishing on the free surface of the working layer.
摘要:
The present invention relates to a production method for a thin film on a support that includes an ionic implantation stage in order to demarcate the thin film in a substrate, the aim of the ionic implantation being to create a layer of micro-cavities in the substrate, a stage to bond the substrate to a support element using close contact and a heat treatment stage intended to bring the layer of micro-cavities to a temperature that is high enough to cause a split along said layer. At least one of said elements, substrate or support, is thinned before the heat treatment stage in order to maintain the close contact between the substrate and the support despite the stresses caused in the elements and resulting from the difference in their thermal dilation coefficients.
摘要:
In a method for reclaiming a delaminated wafer produced as a by-product in the production of bonded wafer by the ion implantation and delamination method, at least ion-implanted layer on a chamfered portion of the delaminated wafer is removed, and then a surface of the wafer is polished. Specifically, at least a chamfered portion of the delaminated wafer is subjected to an etching treatment and/or processing by chamfering, and then a surface of the wafer is polished. Alternatively, the delaminated wafer is subjected to a heat treatment, and then polished. There are provided a method for reclaiming a delaminated wafer, which provides a reclaimed wafer of high quality that does not generate particles even when it is subjected to a heat treatment with good yield, and such a reclaimed wafer.
摘要:
The invention relates to a process of bonding by molecular adhesion of two layers, such as wafers of semiconductor material, wherein propagation of a first bonding wave is initiated from a pressure point applied to at least one of the two layers, and wherein the first bonding wave step is followed by propagating a second bonding wave over an area, for example, in the vicinity of the pressure point. Propagation of the second bonding wave may be obtained through the interposing of a separation element between the two wafers and the withdrawal of the element, for example, after the beginning of the first bonding wave propagation.
摘要:
A process for treating substrates for the microelectronics or optoelectronics industry, wherein the substrates include on at least one of their faces a working layer in which components are intended to be formed. The process includes a step of annealing under a reductive atmosphere followed by a step of chemical-mechanical polishing on the free surface of the working layer.