Abstract:
It is impossible in a cooling device using a phase-change system, seeking high heat transport performance, to obtain sufficient cooling performance due to the increase in thermal resistance with a heating element to be cooled, therefore, a connecting structure of a cooling device according to an exemplary aspect of the present invention includes a connecting board with an opening; a pressing plate of thin plate elastically deformable; first fixing means for fixing the pressing plate to the connecting board with the pressing plate disposed covering heat receiving means composing the cooling device; and second fixing means for fixing the connecting board to a substrate with the heat receiving means abutting against a heating element mounted on the substrate and disposed in the opening.
Abstract:
A sealed casing includes a container provided with a plurality of opening and houses at least one heat-generating body, and a plurality of top boards sealing the openings respectively, and is characterized in that at least one of the openings is disposed in a heat-generating area where the heat-generating body is disposed, and that a cooling unit is disposed on the top board sealing the opening in the heat-generating area.
Abstract:
A cooling system including a vaporizer configured to absorb heat due to a liquid-phase refrigerant being vaporized, a condenser configured to discharge heat due to a refrigerant in a gaseous phase state being liquefied, a resistance body provided in a middle of a pipe passage ranging from the vaporizer to the condenser and applying a resistance to the refrigerant, state detection sensors provided in the pipe passage on an upstream and downstream sides of the resistance body and detecting a state of the refrigerant flowing through each side inside the pipe passage, and a flow rate controller configured to detect droplets in the refrigerant flowing through the pipe passage on the basis of a difference between detection values of the state detection sensors which are detected on the upstream and downstream sides of the resistance body, and controls a flow rate of the refrigerant on the basis of detection results.
Abstract:
It is impossible to avoid the increase in device cost and maintenance cost in order to cool a plurality of heat sources efficiently using a natural-circulation type phase-change cooling device; therefore, a phase-change cooling device according to an exemplary aspect of the present invention includes a plurality of heat receiving units configured to hold respectively refrigerant receiving heat from a plurality of heat sources; a condensing unit configured to generate refrigerant liquid by condensing and liquefying refrigerant vapor of the refrigerant evaporated in the heat receiving units; a refrigerant vapor transport structure connecting the heat receiving units to the condensing unit and configured to transport the refrigerant vapor; and a refrigerant liquid transport structure connecting the heat receiving units to the condensing unit and configured to transport the refrigerant liquid, wherein the refrigerant liquid transport structure includes a main-liquid-pipe connected to the condensing unit, a refrigerant liquid reservoir connected to the main-liquid-pipe and configured to store the refrigerant liquid, and a plurality of sub-liquid-pipes respectively connecting the refrigerant liquid reservoir to the plurality of heat receiving units.
Abstract:
In order to supply a refrigerant to multiple-stage heat receivers equally while saving space, a refrigerant distribution device to distribute a refrigerant supplied from the upper stream according to the present invention includes a main body including a side wall part, an upper face part and a bottom face part, an upstream pipe provided on the upper face part in a manner communicating with an inside of the main body, a downstream pipe provided in a state partially inserted inside the main body via an under face hole part provided in the bottom face part, a tributary pipe provided in the side wall part or the bottom face part in a manner communicating with the inside of the main body, and a refrigerant direction changing means provided between the upstream pipe and the downstream pipe.
Abstract:
A cooling device of the present invention is a cooling device arranged in a chassis equipped with an upper surface, and comprises: a refrigerant; a vaporizer that includes an evaporative vessel having a side face of a curved surface shape, and performs heat-absorption by making the refrigerant change its phase from a liquid phase state to a vapor phase state; a condenser that performs heat-radiation by making the refrigerant change its phase from a vapor phase state to a liquid phase state; a pipe that connects the vaporizer and the condenser; and a flow path suppression means for suppressing a cooling wind that flows between an area over the evaporative vessel and the upper surface.
Abstract:
The present invention provides a heat exchanger including a lower header into which a liquid-phase refrigerant flows, a plurality of heat exchange pipes which branch off from the lower header and extend upwards, and an upper header which is configured to collect refrigerant received by the heat exchange pipes, in which a refrigerant inlet of the lower header is provided with a flow passage resistance adjusting hole having a cross-section smaller than a flow passage cross-section of a pipe passage for supplying the refrigerant.
Abstract:
An electronic board 200 has a heat generating component 220 mounted on it. An enclosure 300 houses the electronic board 200. A heat transport unit 400 is coupled to the enclosure 300 and transports heat generated by the heat generating component 220 to the outside. A heat receiving unit 510 is provided in a heat transport unit 400, 400A. The heat receiving unit 510 receives heat generated by the heat generating component 220. A heat dissipating unit 530 is provided in the heat transport unit 400 in such a manner that a portion of the heat dissipating unit 530 is exposed to outside air, and is coupled to the heat receiving unit 510. The heat dissipating unit 530 dissipates heat received by the heat receiving unit 510 to the outside. A guide duct unit 340 is formed into a tube interconnecting the heat generating component 220 and the heat receiving unit 510 in order to release heat of the heat generating component 220 to the heat receiving unit 510. This enables the heat generating component on the electronic board to be efficiently cooled with a small and simple configuration.
Abstract:
A cooling system of an electronic device storing apparatus of the present invention comprises: a rack including an electronic device and a plurality of placement shelves to place the electronic device; in the rack, a vaporizer having a refrigerant internally being mounted; outside the rack, a condensing part connected with the vaporizer by a laying pipe being installed; and a refrigerant adjustment means for adjusting a height of a refrigerant surface in the vaporizer.
Abstract:
With a phase change cooling device, it is difficult to obtain reliable high-efficiency cooling performance due to a change in heat exchange performance. Thus, a phase change cooling device according to the present invention includes: a heat receiving apparatus that houses a coolant; a sensor that acquires heat receiving apparatus coolant information that is information relating to a liquid-gas two-phase flow interface of the coolant housed in the heat receiving apparatus; a radiator that radiates heat of coolant vapor of the coolant heat-received and evaporated in the heat receiving apparatus, and recirculates liquefied coolant liquid to the heat receiving apparatus; a valve that controls a flow rate of the coolant liquid; and a control unit that controls a degree of opening of the valve, wherein the control unit controls, based on the heat receiving apparatus coolant information, a degree of opening of the valve in such a way that a liquid-gas two-phase flow interface of the coolant is located at an end part of the heat receiving apparatus in a vertical direction.