Abstract:
A method of producing a semiconductor light emitting element includes providing a semiconductor stack including a first semiconductor layer, an active layer, a second semiconductor layer, and a first insulating layer. An upper surface of the first insulating layer is partially covered with a mask. The semiconductor stack is etched to expose the first semiconductor layer in a region not covered by the mask. The mask is removed. A second insulating layer covering from the upper surface of the first insulating layer to an exposed region of the first semiconductor layer is provided. The second insulating layer is etched without masking to remove at least a portion of the second insulating layer covering the exposed region to expose the exposed region. A first conducting layer covering from the exposed region of the first semiconductor layer to a region above the upper surface of the first insulating layer is provided.
Abstract:
A light emitting device can further improve light extraction efficiency. A method of manufacturing such a light emitting device can also prove advantageous. The light emitting device includes a light emitting element, a light-transmissive member which is disposed on a light extracting surface side of the light emitting element, and a reflecting layer disposed on an element bonding surface of the light transmissive member where the light emitting element is disposed and adjacent to the light emitting element. The light-transmissive member, in a plan view, has a planar dimension greater than the light extracting surface of the light emitting element.
Abstract:
A light emitting apparatus includes: a mount substrate; a first light emitting device mounted on the mount substrate; a light transparent member, wherein a lower surface of the light transparent member is attached to an upper surface of the first light emitting device via an adhesive material, wherein the light transparent member has a plate shape and is positioned to receive incident light emitted from the first light emitting device, and wherein a first lateral surface of the light transparent member is located laterally inward of a lateral surface of the first light emitting device; and a covering member that contains a light reflective material and covers at least the lateral surface of the light transparent member.
Abstract:
A light emitting apparatus includes a mount substrate; two or more light emitting devices mounted on the mount substrate such that adjacent light emitting devices face each other at lateral surfaces thereof; a light transparent member positioned on upper surfaces of the light emitting devices, the light transparent member having a plate shape and being positioned to receive incident light emitted from the light emitting devices; and a covering member. In a plan view, the light transparent member is larger than each of the light emitting devices. The covering member contains a light reflective material and covers at least a lateral surface of the light transparent member.
Abstract:
A semiconductor light-emitting element capable of increasing a strength of adhesion between an electrode and a protection film.The semiconductor light-emitting element includes a semiconductor structure having an n-type semiconductor layer and a p-type semiconductor layer. A transparent conductive film is disposed on the p-type semiconductor layer. An insulation film is disposed on the transparent conductive film. A p-side electrode layer is disposed on the insulation film. A protection film is disposed over the insulation film, and the protection film covers part of the p-side electrode layer.
Abstract:
A light emitting device can further improve light extraction efficiency. A method of manufacturing such a light emitting device can also prove advantageous. The light emitting device includes a light emitting element, a light-transmissive member which is disposed on a light extracting surface side of the light emitting element, and a reflecting layer disposed on an element bonding surface of the light transmissive member where the light emitting element is disposed and adjacent to the light emitting element. The light-transmissive member, in a plan view, has a planar dimension greater than the light extracting surface of the light emitting element.
Abstract:
A semiconductor device has a light emitting element, and a resin layer; the light emitting element includes a semiconductor laminated body in which a first semiconductor layer and a second semiconductor layer are laminated in sequence, a second electrode connected to the second semiconductor layer on an upper surface of the second semiconductor layer that forms an upper surface of the semiconductor laminated body, and a first electrode connected to the first semiconductor layer on an upper surface of the first semiconductor layer in which a portion of the second semiconductor layer on one surface of the semiconductor laminated body is removed and a portion of the first semiconductor layer is exposed; and the resin layer is configured to cover at least a side surface of the light emitting element, and an upper surface of the resin layer is lower than the upper surface of the semiconductor laminated body.
Abstract:
Provided is a method for manufacturing a light emitting device comprising a light emitting element and an optical part, the method comprising the steps of (i) forming a hydroxyl film on a bonding surface of each of the light emitting element and the optical part by an atomic layer deposition, and (ii) bonding the bonding surfaces of the light emitting element and the optical part with each other, each of the bonding surfaces having the hydroxyl film formed thereon, wherein a substep is repeated at least one time in the step (i), in which substep a first raw material gas and a second raw material gas are sequentially supplied onto the bonding surfaces of the light emitting element and the optical part, and wherein the bonding of the bonding surfaces in the step (ii) is performed without a heating treatment.
Abstract:
A nitride semiconductor device includes a silicon substrate, a nitride semiconductor layer formed on the silicon substrate, and metal electrodes formed in contact with the silicon substrate. The metal electrodes has first metal layers which are formed in a shape of discrete islands and in contact with the silicon substrate, and second metal layers which are in contact with the silicon substrate exposed among the islands of the first metal layers and are formed to cover the first metal layers. Further, the second metal layers are made of a metal capable of forming ohmic contact with silicon, and the first metal layers are made of an alloy containing a metal and silicon, in which the metal is different than that in the second metal layer.
Abstract:
A light emitting element includes a first light emitting portion and a second light emitting portion. The first light emitting portion includes a first stacked body having a first n-type layer, a first active layer, a first p-type layer, a first tunnel junction layer, and a second n-type layer. The second light emitting portion includes a second stacked body having a third n-type layer, a second p-type layer, a second tunnel junction layer, a fourth n-type layer, a second active layer, a third p-type layer, and a transmissive conductive film. A resistivity of the second n-type layer is higher than a resistivity of the transmissive conductive film. A thickness of the second n-type layer is larger than a thickness of the transmissive conductive film.