摘要:
An integrated programmable logic device (PLD) includes flash EPROM storage transistors. The PLD includes a multiplexor that selectively provides program, erase, or verify voltages to the storage transistors. The program, erase, and verify voltages may be supplied using external power supplies or may be generated internally by on-chip charge-pump generators. A configurable memory on the PLD is used to adjust the output voltages from each of the on-chip charge-pump generators.
摘要:
A programmable logic device (PLD) includes test circuitry compatible with the JTAG standard (IEEE Standard 1149.1). The PLD also includes a programmable JTAG-disable bit that can be selectively programmed to disable the JTAG circuitry, leaving the PLD to operate as a conventional, non-JTAG-compatible PLD. The PLD also includes means for testing the JTAG test circuitry to determine whether the JTAG circuitry is defective, and means for programming the JTAG-disable bit to disable the JTAG circuitry if the testing means determines that the JTAG circuitry is defective.
摘要:
An overridable data protection mechanism for unlocking/locking a PLD includes a data protect override key register, an input key register, and a comparator. After the user inputs an access code to the input key register, the software program sends an enabling signal to the comparator which in turn compares the bits stored in the data protect override key register and the bits in the input key register. If the bits in the two registers are identical, then the comparator outputs a disable data protect signal, thereby allowing the user to modify the configuration data in that PLD. After an incremented version control number and the new configuration data are downloaded to the PLD, the program sends a disabling signal to the comparator, thereby preventing further modification to the configuration data on that PLD.
摘要:
An overridable data protection mechanism for unlocking/locking a PLD includes a data protect override key register, an input key register, and a comparator. After the user inputs an access code to the input key register, the software program sends an enabling signal to the comparator which in turn compares the bits stored in the data protect override key register and the bits in the input key register. If the bits in the two registers are identical, then the comparator outputs a disable data protect signal, thereby allowing the user to modify the configuration data in that PLD. After an incremented version control number and the new configuration data are downloaded to the PLD, the program sends a disabling signal to the comparator, thereby preventing further modification to the configuration data on that PLD.
摘要:
A wordline driver for a wordline in an integrated programmable logic device (PLD) having flash memory cells. The wordline driver includes an input terminal that accepts a binary wordline input signal, a pass gate coupled to the input terminal and to a mode-control terminal, and an inverter that receives an input from the pass gate or the mode-control terminal, depending on the operating mode of the PLD. The output signal from the inverter is coupled to a multiplexer that selects between that output and a signal from a voltage supply, the signal selected depending on the operating mode of the PLD. The multiplexer outputs the selected signal to the wordline of the PLD.
摘要:
An in-system programing/erasing/verifying structure for non-volatile programable logic devices includes a data input pin, a data output pin, an instruction register, a plurality of data registers including an ISP register, wherein said instruction register and said plurality of data registers are coupled in parallel between said data input pin and said data output pin, and a controller for synchronizing said instruction register and said plurality of data registers. The ISP register includes: an address field, a data field, and a status field. An ISP instruction need only be entered once to program/erase the entire device. Specifically, the address/data packets can be shifted back to back into the ISP register without inserting multiple instructions between each packet at the data input pin, thereby dramatically decreasing the time required to program/erase the entire device in comparison to known ISP methods. Furthermore, the invention provides an efficient method for providing the status (i.e. result), of the ISP operations to either the end-user or the supporting software.
摘要:
A complex programmable logic device (PLD) that includes a number of programmable function blocks and an instruction bus for receiving programming instructions. The programming instructions are used to program the function blocks to enable the PLD to perform one or more desired logic functions. The PLD also includes an instruction-blocking circuit that is connected to each of the functional blocks. When directed by a user, the instruction blocking circuit selectively blocks programming instructions on the instruction bus from one or more of the function blocks while allowing the other function blocks to receive the programming instructions. Thus, one or more function blocks in the PLD are reprogrammed without interrupting the operation of the remaining function blocks.
摘要:
An in-system programming/erasing/verifying structure for non-volatile programmable logic devices includes a data input pin, a data output pin, an instruction register, a plurality of data registers including an ISP register, wherein said instruction register and said plurality of data registers are coupled in parallel between said data input pin and said data output pin, and a controller for synchronizing said instruction register and said plurality of data registers. The ISP register includes: an address field, a data field, and a status field. An ISP instruction need only be entered once to program/erase the entire device. Specifically, the address/data packets can be shifted back to back into the ISP register without inserting multiple instructions between each packet at the data input pin, thereby dramatically decreasing the time required to program/erase the entire device in comparison to known ISP methods. Furthermore, the invention provides an efficient method for providing the status (i.e. result), of the ISP operations to either the end-user or the supporting software.
摘要:
A programmable logic device (PLD) including configurable circuitry for altering the speed-versus-power characteristics of the PLD after production, and for allowing the PLD to selectively operate on either a 3.3-volt or a 5-volt power supply. The configurable circuitry includes an input buffer, an output buffer and a reference generator. The input buffer includes a dedicated P-channel transistor connected in series with a dedicated N-channel transistor, and a plurality of trip-point adjustment transistors which are selectively connected in parallel with the dedicated transistors to adjust the trip-point of the input buffer by altering the N-to-P ratio. The output buffer includes two configurable buffers whose trip-points are also adjustable. A configurable reference generator is also provided for generating a high precision reference voltage which is supplied to the sense amplifiers located in the function blocks and interconnect matrix of the PLD.
摘要:
A programmable logic device (PLD) performs a self-test blank check erase verify operation on memory elements of the PLD to verify that they are erased prior to programming. An enhanced reference voltage source is provided to reliably generate a reference source voltage at a predetermined voltage level regardless of variations in the on-chip power supply voltage and temperature variations. The reference voltage source includes a first resistor connected between the on-chip voltage source and an output node, a second resistor connected to the output node, and a reference voltage adjustment circuit connected between the second resistor and ground. The reference voltage adjustment circuit is programmable to selectively connect the output node to ground through one or more resistive elements in response to input signals such that the output node is maintained at the predetermined reference voltage. The first and second resistors form a resistive divider that allows the predetermined reference voltage to track changes in the on-chip voltage source.