Abstract:
A process is disclosed for the separation of an enantiomerically enriched 1-tosyloxy-2-acyloxy-3-butene and an enantiomerically enriched 1-tosyloxy-2-hydroxy-3-butene from a first mixture containing both compounds. The process includes the steps of:(a) forming a solution of the mixture in an organic solvent;(b) bringing the solution formed in (a) to a temperature wherein most of the enantiomerically enriched 1-tosyloxy-2-hydroxy-3-butene precipates, leaving in solution most of the enantiomerically enriched 1-tosyloxy-2-acyloxy-3-butene; and(c) separating the precipitate formed in (b) from the solution.
Abstract:
In accordance with the present invention, a method for the interconvertion of the enantiomers of acyclic 1,2-dihydroxy-3-alkenes or for converting either enantiomer of acylic 1,2-dihydroxy-3-alkenes to the corresponding antipodal 1-hydroxy-2-alkoxy-3-alkene compounds has been discovered, comprising reacting in an acidic reaction media either enantiomer of an acylic vinyl epoxide (which can be derived from the corresponding acyclic 1,2-dihydroxy-3-alkene) with water, alcohol, or a mixture thereof. When substantially optically pure acyclic vinyl epoxide compounds are employed in the inventive method, the interconverted acyclic 1,2-dihydroxy-3-alkene or 1-hydroxy-2-alkoxy-3-alkene compound products are also substantially optically pure.
Abstract:
Novel 2-substituted saccharins which inhibit the enzymatic activity of proteolytic enzymes, are useful in the treatment of degenerative diseases and have the formula ##STR1## wherein: L is --O--, --S--, --SO-- or --SO.sub.2 --;m and n are each independently 0 or 1;R.sub.1 is halo, lower-alkanoyl, 1-oxophenalenyl, phenyl or substituted phenyl, heterocyclyl or substituted heterocyclyl or, when L is --O-- and n is 1, cycloheptatrienon-2-yl or, when L is --S-- and n is 1, cyano or lower-alkoxythiocarbonyl or, when L is --SO.sub.2 -- and n is 1, lower-alkyl or trifluoromethyl;R.sub.2 is hydrogen, lower-alkoxycarbonyl, phenyl or phenylthio; andR.sub.3 and R.sub.4 are each hydrogen or various substituents and processes for preparation and pharmaceutical compositions and method of use thereof are disclosed.
Abstract:
The condensation reaction of a ketone with either an ester or a carbonate to form, respectively, a 1,3-diketone or a .beta.-ketoester often affords poor results under the standard condensation reaction conditions. High yields and high purities of the desired product can be obtained by performing the reaction using an alkoxide base in DMSO as the sole solvent.
Abstract:
4-R.sup.4 -R.sup.5 -2-Saccharinylmethyl aryl carboxylates, useful in the treatment of degenerative diseases, are prepared by reacting a 4-R.sup.4 -R.sup.5 -2-halomethylsaccharin with an arylcarboxylic acid in the presence of an acid-acceptor.
Abstract:
Novel 2-substituted saccharins which inhibit the enzymatic activity of proteolytic enzymes, are useful in the treatment of degenerative diseases and have the formula 0010wherein:L is --O--, --S--, --SO-- or --SO.sub.2 --; m and n are each independently 0 or 1; R.sub.1 is halo, lower-alkanoyl, 1-oxophenalenyl, phenyl or substituted phenyl, heterocyclyl or substitued heterocyclyl or, when L is --O-- and n is 1, cycloheptatrienon-2-yl or, when L is --S-- and n is 1, cyano or lower-alkoxythiocarbonyl or, when L is --SO.sub.2 -- and n is 1, lower-alkyl or trifluoromethyl; R.sub.2 is hydrogen, lower-alkoxycarbonyl, phenyl or phenylthio; and R.sub.3 and R.sub.4 are each hydrogen or various substituents and processes for preparation and pharmaceutical compositions and method of use thereof are disclosed.
Abstract:
A process is disclosed for the isolation of an enantiomerically enriched alcohol from a first mixture of an enantiomerically enriched alcohol and an enantiomerically enriched ester. The process includes the steps of:(a) contacting the mixture with a reagent capable of reacting with the hydroxy function of the alcohol, without the loss of optical purity, so as to produce a second mixture containing a base stable derivative of the enantiomerically enriched alcohol and the unreacted ester;(b) contacting the second mixture with a base capable of reacting with the ester so as to produce a third mixture containing a compound more volatile than the base stable derivative of the alcohol;(c) removing the volatile compound from the third mixture; and(d) converting the base stable derivative of the alcohol back to the enantiomerically enriched alcohol, without the loss of optical purity.
Abstract:
A process for preparing a halohydrin of a water-miscible olefin comprising: reacting a water-miscible olefin in water with a compound of the formula (I) ##STR1## wherein R.sub.1 and R.sub.2 independently represent a branched or unbranched, substituted or unsubstituted, lower alkyl having from 1 to 5 carbons and X is a halogen, to thereby form the halohydrin of the water-miscible olefin.
Abstract:
Novel 2-substituted saccharins which inhibit the enzymatic activity of proteolytic enzymes, are useful in the treatment of degenerative diseases and have the formula ##STR1## wherein: L is --O--, --S--, --SO--or --SO.sub.2 --;m and n are each independently 0 or 1;R.sub.1 is halo, lower-alkanoyl, 1-oxophenalenyl, phenyl or substituted phenyl, heterocyclyl or substituted heterocyclyl or, when L is --O-- and n is 1, cycloheptatrienon-2-yl or, when L is --S-- and n is 1, cyano or lower-alkoxythiocarbonyl or, when L is --SO.sub.2 -- and n is 1, lower-alkyl or trifluoromethyl; R.sub.2 is hydrogen, lower-alkoxycarbonyl, phenyl or phenylthio; andR.sub.3 and R.sub.4 are each hydrogen or various substituents and processes for preparation and pharmaceutical compositions and method of use thereof are disclosed.
Abstract:
A method for the purification of alcohols from organic soluble impurities has been discovered comprising treating the crude alcohol with a cyclic anhydride followed by an aqueous base and extracting the corresponding half-ester into aqueous solution leaving the impurities in organic solution. This method is particularly useful for the separation of chiral, nonracemic alcohols from the corresponding antipodal ester (the mixture resulting from an enzymatic kinetic resolution) because the separation is non-chromatographic and the enantiomeric integrity of the products is maintained.