摘要:
Interconnect structures possessing an organosilicate glass based material for 90 nm and beyond BEOL technologies in which a multilayer hardmask using a line-first approach are described. The interconnect structure of the invention achieves respective improved device/interconnect performance and affords a substantial dual damascene process window owing to the non-exposure of the OSG material to resist removal plasmas and because of the alternating inorganic/organic multilayer hardmask stack. The latter feature implies that for every inorganic layer that is being etched during a specific etch step, the corresponding pattern transfer layer in the field is organic and vice-versa.
摘要:
Interconnect structures possessing an organosilicate glass based material for 90 nm and beyond BEOL technologies in which a multilayer hardmask using a line-first approach are described. The interconnect structure of the invention achieves respective improved device/interconnect performance and affords a substantial dual damascene process window owing to the non-exposure of the OSG material to resist removal plasmas and because of the alternating inorganic/organic multilayer hardmask stack. The latter feature implies that for every inorganic layer that is being etched during a specific etch step, the corresponding pattern transfer layer in the field is organic and vice-versa.
摘要:
Interconnect structures possessing an organosilicate glass based material for 90 nm and beyond BEOL technologies in which a multilayer hardmask using a line-first approach are described. The interconnect structure of the invention achieves respective improved device/interconnect performance and affords a substantial dual damascene process window owing to the non-exposure of the OSG material to resist removal plasmas and because of the alternating inorganic/organic multilayer hardmask stack. The latter feature implies that for every inorganic layer that is being etched during a specific etch step, the corresponding pattern transfer layer in the field is organic and vice-versa.
摘要:
A method for fabricating a SiCOH dielectric material comprising Si, C, O and H atoms from a single organosilicon precursor with a built-in organic porogen is provided. The single organosilicon precursor with a built-in organic porogen is selected from silane (SiH4) derivatives having the molecular formula SiRR1R2R3, disiloxane derivatives having the molecular formula R4R5R6—Si—O—Si—R7R8R9, and trisiloxane derivatives having the molecular formula R10R11R12—Si—O—Si—R13R14—O—Si—R15R16R17 where R and R1-17 may or may not be identical and are selected from H, alkyl, alkoxy, epoxy, phenyl, vinyl, allyl, alkenyl or alkynyl groups that may be linear, branched, cyclic, polycyclic and may be functionalized with oxygen, nitrogen or fluorine containing substituents. In addition to the method, the present application also provides SiCOH dielectrics made from the inventive method as well as electronic structures that contain the same.
摘要:
A method for forming a ultralow dielectric constant layer with controlled biaxial stress is described incorporating the steps of forming a layer containing Si, C, O and H by one of PECVD and spin-on coating and curing the film in an environment containing very low concentrations of oxygen and water each less than 10 ppm. A material is also described by using the method with a dielectric constant of not more than 2.8. The invention overcomes the problem of forming films with low biaxial stress less than 46 MPa.
摘要:
A method for forming a ultralow dielectric constant layer with controlled biaxial stress is described incorporating the steps of forming a layer containing Si, C, O and H by one of PECVD and spin-on coating and curing the film in an environment containing very low concentrations of oxygen and water each less than 10 ppm. A material is also described by using the method with a dielectric constant of not more than 2.8. The invention overcomes the problem of forming films with low biaxial stress less than 46 MPa.
摘要:
An interconnect structure including a patterned multilayer of spun-on dielectrics as well as methods for manufacturing the same are provided. The interconnect structure includes a patterned multilayer of spun-on dielectrics formed on a surface of a substrate. The patterned multilayer of spun-on dielectrics is composed of a bottom low-k dielectric, a buried etch stop layer, and a top low-k dielectric, wherein the bottom and top low-k dielectrics have a first composition, the said buried etch stop layer has a second composition which is different from the first composition and the buried etch stop layer is covalently bonded to said top and bottom low-k dielectrics. The interconnect structure further includes a polish stop layer formed on the patterned multilayer of spun-on dielectrics; and metal conductive regions formed within the patterned multilayer of spun-on dielectrics. Covalent bonding is achieved by employing an organosilane having functional groups that are capable of bonding with the top and bottom dielectric layers.
摘要:
A low-k dielectric metal conductor interconnect structure having no micro-trenches present therein and a method of forming such a structure are provided. Specifically, the above structure is achieved by providing an interconnect structure which includes at least a multilayer of dielectric materials which are applied sequentially in a single spin apply tool and then cured in a single step and a plurality of patterned metal conductors within the multilayer of spun-on dielectrics. The control over the conductor resistance is obtained using a buried etch stop layer having a second atomic composition located between the line and via dielectric layers of porous low-k dielectrics having a first atomic composition. The inventive interconnect structure also includes a hard mask which assists in forming the interconnect structure of the dual damascene-type. The first and second composition are selected to obtain etch selectivity of at least 10 to 1 or higher, and are selected from specific groups of porous low-k organic or inorganic materials with specific atomic compositions and other discoverable quantities.
摘要:
The present invention describes the use of large thin film (TF) capacitors having capacitance C made in a separate set of TF layers ABOVE the Si and wiring levels of an integrated circuit (IC). This C is very large. This invention describes a two-level IC architecture in which a metal/insulator/metal (MIM) capacitor structure comprises the upper level, and CMOS logic and memory circuits made in the Si wafer substrate comprise the lower level. The added thin film capacitance serves to stabilize the power supply voltage at a constant level during GHz IC operation.
摘要:
A thin film transistor is described incorporating a gate electrode, a gate insulating layer, a semiconducting channel layer deposited on top of the gate insulating layer, an insulating encapsulation layer positioned on the channel layer, a source electrode, a drain electrode and a contact layer beneath each of the source and drain electrodes and in contact with at least the channel layer, all of which are situated on a plastic substrate. By enabling the use of plastics having low glass transition temperatures as substrates, the thin film transistors may be used in large area electronics such as information displays and light sensitive arrays for imaging which are flexible, lighter in weight and more impact resistant than displays fabricated on traditional glass substrates. The thin film transistors are useful in active matrix liquid crystal displays where the plastic substrates are transparent in the visible spectrum. Enablement of the use of such plastics is by way of the use of polymeric encapsulation films to coat the surfaces of the plastic substrates prior to subsequent processing and the use of novel low temperature processes for the deposition of thin film transistor structures.