Abstract:
A method and system are presented for use in measuring on patterned samples, aimed at determining asymmetry in the pattern. A set of at least first and second measurements on a patterned region of a sample is performed, where each of the measurements comprises: directing illuminating light onto the patterned region along an illumination channel and collecting light reflected from the illuminated region propagating along a collection channel to be detected, such that detected light from the same patterned region has different polarization states which are different from polarization of the illuminating light, and generating a measured data piece indicative of the light detected in the measurement. Thus, at least first and second measured data pieces are generated for the at least first and second measurements on the same patterned region. The at least first and second measured data pieces are analyzed and output data is generated being indicative of a condition of asymmetry in the patterned region.
Abstract:
A method and system are presented for use in model-based optical measurements in patterned structures. The method comprises: selecting an optimal optical model for interpretation of optical measured data indicative of optical response of the structure under measurements. The selection of the optimal optical model comprises: creating a complete optical model with floating parameters defining multiple configurations of said complete model including one or more model configurations describing an optical response of the structure under measurements, utilizing the complete model for predicting a reference optical response from the structure and generating corresponding virtual reference data, and using the virtual reference data for selecting the optimal optical model for interpretation of the optical measured data.
Abstract:
A method and system are presented for use in controlling a multiple patterning process of n patterning stages subsequently applied to a sample to produce a target pattern thereon. The method comprises: providing intermediate measured data indicative of an optical response of the sample after being patterned by m-th patterning stage, 1≤m
Abstract:
A method and system are presented for use in controlling a process applied to a patterned structure having regions of different layered stacks. The method comprises: sequentially receiving measured data indicative of optical response of the structure being processed during a predetermined processing time, and generating a corresponding sequence of data pieces measured over time; and analyzing and processing the sequence of the data pieces and determining at least one main parameter of the structure. The analyzing and processing comprises: processing a part of said sequence of the data pieces and obtaining data indicative of one or more parameters of the structure; utilizing said data indicative of said one or more parameters of the structure and optimizing model data describing a relation between an optical response of the structure and one or more parameters of the structure; utilizing the optimized model data for processing at least a part of the sequence of the measured data pieces, and determining at least one parameters of the structure characterizing said process applied to the structure, and generating data indicative thereof.
Abstract:
A method and system are presented for use in controlling a process applied to a patterned structure having regions of different layered stacks. The method comprises: sequentially receiving measured data indicative of optical response of the structure being processed during a predetermined processing time, and generating a corresponding sequence of data pieces measured over time; and analyzing and processing the sequence of the data pieces and determining at least one main parameter of the structure. The analyzing and processing comprises: processing a part of said sequence of the data pieces and obtaining data indicative of one or more parameters of the structure; utilizing said data indicative of said one or more parameters of the structure and optimizing model data describing a relation between an optical response of the structure and one or more parameters of the structure; utilizing the optimized model data for processing at least a part of the sequence of the measured data pieces, and determining at least one parameters of the structure characterizing said process applied to the structure, and generating data indicative thereof.
Abstract:
A method and system are presented for use in measuring on patterned samples, aimed at determining asymmetry in the pattern. A set of at least first and second measurements on a patterned region of a sample is performed, where each of the measurements comprises: directing illuminating light onto the patterned region along an illumination channel and collecting light reflected from the illuminated region propagating along a collection channel to be detected, such that detected light from the same patterned region has different polarization states which are different from polarization of the illuminating light, and generating a measured data piece indicative of the light detected in the measurement. Thus, at least first and second measured data pieces are generated for the at least first and second measurements on the same patterned region. The at least first and second measured data pieces are analyzed and output data is generated being indicative of a condition of asymmetry in the patterned region.
Abstract:
A method and system are presented for use in measuring on patterned samples, aimed at determining asymmetry in the pattern. A set of at least first and second measurements on a patterned region of a sample is performed, where each of the measurements comprises: directing illuminating light onto the patterned region along an illumination channel and collecting light reflected from the illuminated region propagating along a collection channel to be detected, such that detected light from the same patterned region has different polarization states which are different from polarization of the illuminating light, and generating a measured data piece indicative of the light detected in the measurement. Thus, at least first and second measured data pieces are generated for the at least first and second measurements on the same patterned region. The at least first and second measured data pieces are analyzed and output data is generated being indicative of a condition of asymmetry in the patterned region.
Abstract:
A monitoring system and method are provided for determining at least one property of an integrated circuit (IC) comprising a multi-layer structure formed by at least a layer on top of an underlayer. The monitoring system receives measured data comprising data indicative of optical measurements performed on the IC, data indicative of x-ray photoelectron spectroscopy (XPS) measurements performed on the IC and data indicative of x-ray fluorescence spectroscopy (XRF) measurements performed on the IC. An optical data analyzer module analyzes the data indicative of the optical measurements and generates geometrical data indicative of one or more geometrical parameters of the multi-layer structure formed by at least the layer on top of the underlayer. An XPS data analyzer module analyzes the data indicative of the XPS measurements and generates geometrical and material related data indicative of geometrical and material composition parameters for said layer and data indicative of material composition of the underlayer. An XRF data analyzer module analyzes the data indicative of the XRF measurements and generates data indicative of amount of a predetermined material composition in the multi-layer structure. A data interpretation module generates combined data received from analyzer modules and processes the combined data and determines the at least one property of at least one layer of the multi-layer structure.
Abstract:
A control system is presented for use in measuring one or more parameters of a sample. The control system comprises an input utility and a processor utility. The input utility is configured for receiving input data including first data comprising X-ray Diffraction or High-Resolution X-ray Diffraction (XRD) response data of the sample indicative of a material distribution in the sample, and second data comprising optical response data of the sample to incident light indicative of at least a geometry of the sample. The processor utility is configured and operable for processing and analyzing one of the first and second data for optimizing the other one of the first and second data, and utilizing the optimized data for determining said one or more parameters of the sample including a strain distribution in the sample.