摘要:
The invention relates to a method for defect and conductivity engineering of an individual part in a conducting nanoscaled structure by generating heat-induced migration, melting, sputtering and/or evaporation of conductive material of the nanoscaled structure by directing a focussed electron beam on this individual part of the structure to be engineered. The invention further relates to the use of a secondary electron microscope having a filter for detecting back scattered electrons for such a method and a respective secondary electron microscope having such a filter for detecting back scattered electrons.
摘要:
The invention relates to a process for the metallization of nucleic acids, comprising providing tris(hydroxymethyl)phosphine-Au (THP-Au) particles or derivatives thereof, binding said THP-Au particles to a nucleic acid to produce a metal nanoparticle-nucleic acid composite, and treatment of the metal nanoparticle-nucleic acid composite with an electroless plating solution. The invention further relates to a metallized nucleic acid obtainable according to such a method and a nanowire including a method for the manufacture of a nanowire.
摘要:
The present invention is related to a method of attaching hydrophilic species to hydrophilic macromolecules and immobilizing the hydrophilic macromolecules on a hydrophobic surface, to a nano-assembly and to uses of the nano-assembly.
摘要:
The present invention relates to a process for immobilization of nucleic acid molecules on a substrate, wherein the substrate is treated with atomic oxygen plasma prior to immobilizing the nucleic acid molecules thereon. The invention is further related to immobilized nucleic acid molecules and uses thereof.
摘要:
The present invention relates to a method of activating a silicon surface for subsequent patterning of molecules onto said surface, and to patterns produced by this method, and further to uses of said pattern.
摘要:
The present invention relates to a method for preparing a nanowire crossbar structure, comprising: (a) providing a substrate; (b) depositing thereon a composite structure comprising a nucleic acid-block copolymer having equidistant nucleic acid-catalyst binding sites and at least one catalyst nanoparticle functionalized to bind specifically to nucleic acid segments of the copolymer; (c) applying a directed gas flow and/or an alternating electric field onto the composite structure; and (d) applying chemical vapor deposition techniques, a use of such a structure and a structure obtainable by such a method.
摘要:
The present invention relates to a method of solubilizing carbon nanotubes, to carbon nanotubes produced thereby and to uses of said carbon nanotubes.
摘要:
The present invention relates to a method of activating a silicon surface for subsequent patterning of molecules onto said surface, and to patterns produced by this method, and further to uses of said pattern.
摘要:
The invention relates to a nanoparticle film comprising a nanoparticle network formed of nanoparticles interlinked by linker molecules. The linker molecules have at least two linker units that can bind to the surface of the nanoparticles. By introducing selectivity-enhancing units in the linker molecule, the selectivity of the nanoparticle film towards target analytes can be enhanced. A fine-tuning of the selectivity can be achieved by including a fine-tuning unit in the vicinity of the selectivity-enhancing unit. The nanoparticle film can be used to produce chemical sensors which are selective and stable in their performance.
摘要:
The invention relates to tuned multifunctional linker molecules for charge transport through organic-inorganic composite structures. The problem underlying the present invention is to provide multifunctional linker molecules for tuning the conductivity in nanoparticle-linker assemblies which can be used in the formation of electronic networks and circuits and thin films of nanoparticles. The problem is solved according to the invention by providing a multifunctional linker molecule of the general structure CON1-FUNC1-X-FUNC2-CON2 in which X is the central body of the molecule, FUNC1 and FUNC2 independently of each other are molecular groups introducing a dipole moment and/or capable of forming intermolecular and/or intramolecular hydrogen bonding networks, and CON 1 and CON 2 independently of each other are molecular groups binding to nanostructured units comprising metal and semiconductor materials.