摘要:
An apparatus for determining a thickness change of thermal interface material (TIM) disposed between first and second elements is provided. The apparatus includes a first part movable with the first element in a movement direction along which the TIM thickness is to be determined, a second part movable with the second element in the movement direction and a sensor to measure a distance between the first and second parts in the movement direction, the measured distance being related to the TIM thickness change.
摘要:
An apparatus for determining a thickness change of thermal interface material (TIM) disposed between first and second elements is provided. The apparatus includes a first part movable with the first element in a movement direction along which the TIM thickness is to be determined, a second part movable with the second element in the movement direction and a sensor to measure a distance between the first and second parts in the movement direction, the measured distance being related to the TIM thickness change.
摘要:
An apparatus for determining a magnitude of a compressive load applied to a piston including a compliant film disposed between first and second elements is provided. The apparatus includes a first part movable with the first element in a movement direction along which the magnitude of the compressive load is to be determined, a second part movable with the second element in the movement direction and a sensor to measure a distance between the first and second parts in the movement direction, the measured distance being related to a deformation of the compliant film as the compressive load is applied.
摘要:
An apparatus for determining a magnitude of a compressive load applied to a piston including a compliant film disposed between first and second elements is provided. The apparatus includes a first part movable with the first element in a movement direction along which the magnitude of the compressive load is to be determined, a second part movable with the second element in the movement direction and a sensor to measure a distance between the first and second parts in the movement direction, the measured distance being related to a deformation of the compliant film as the compressive load is applied.
摘要:
Disclosed is a multilayer thermal interface material which includes a first layer of metallic thermal interface material, a buffer layer and preferably a second layer of thermal interface material which may be metallic or nonmetallic. The multilayer thermal interface material is used in conjunction with a semiconductor device assembly of a chip carrier substrate, a heat spreader for attaching to the substrate, a semiconductor device mounted on the substrate and underneath the heat spreader and the multilayer thermal interface material interposed between the heat spreader and the semiconductor device. The heat spreader has a first coefficient of thermal expansion (CTE), CTE1, the buffer layer has a second CTE, CTE2, and the semiconductor device has a third CTE, CTE3, wherein CTE1>CTE2>CTE3.
摘要:
Disclosed is a multilayer thermal interface material which includes a first layer of metallic thermal interface material, a buffer layer and preferably a second layer of thermal interface material which may be metallic or nonmetallic. The multilayer thermal interface material is used in conjunction with a semiconductor device assembly of a chip carrier substrate, a heat spreader for attaching to the substrate, a semiconductor device mounted on the substrate and underneath the heat spreader and the multilayer thermal interface material interposed between the heat spreader and the semiconductor device. The heat spreader has a first coefficient of thermal expansion (CTE), CTE1, the buffer layer has a second CTE, CTE2, and the semiconductor device has a third CTE, CTE3, wherein CTE1>CTE2>CTE3.
摘要:
The invention is directed to an improved microelectronics device that reduces BEOL delamination by reducing the tensile stress imposed on the via which connects first level interconnects with the BEOL. Tensile stress imposed on the via is reduced by shifting the via towards the center of a silicon chip or alternatively shifting the UBM towards the corners of the silicon chip.
摘要:
The invention is directed to an improved microelectronics device that reduces BEOL delamination by reducing the tensile stress imposed on the via which connects first level interconnects with the BEOL. Tensile stress imposed on the via is reduced by shifting the via towards the center of a silicon chip or alternatively shifting the UBM towards the corners of the silicon chip.
摘要:
A method attaches a semiconductor chip to a substrate, applies a thermal interface material to a top of the semiconductor chip, and positions a lid over the semiconductor chip typically attached to the substrate with an adhesive. The method applies a force near the distal ends of the lid or substrate to cause a center portion of the lid or substrate to bow away from the semiconductor chip and increases the central thickness of the thermal interface material prior to curing. While the center portion of the lid or substrate is bowed away from the semiconductor chip, the thermal interface material method increases the temperature of the assembly, thus curing the thermal interface material and lid adhesive. After the thermal interface material has and adhesive have cured, the method removes the force from near the distal ends of the lid or substrate to cause the center portion of the lid to return to a position closer to the semiconductor chip, creating a residual compressive stress in the thermal interface material thus improving thermal performance and thermal reliability.
摘要:
A die stack package is provided and includes a substrate, a stack of computing components, at least one thermal plate, which is thermally communicative with the stack and a lid supported on the substrate to surround the stack and the at least one thermal plate to thereby define a first heat transfer path extending from one of the computing components to the lid via the at least one thermal plate and a fin coupled to a surface of the lid and the at least one thermal plate, and a second heat transfer path extending from the one of the computing components to the lid surface without passing through the at least one thermal plate.