Abstract:
The current embodiment describes a process of flowing an oxidant species over the reducing side of an oxygen transport membrane. O2− anions are then continuously transported from the reducing side through the oxygen transport membrane to the oxidizing side where an organic compound is converted to a partially oxidized organic compound on the oxidizing side.
Abstract:
The process describes performing electrolysis on an alkaline oxygenate mixture to produce hydrogen. In this process the electrolysis does not form any significant amounts of oxygen.
Abstract:
A process is described for flowing an oxygenate feed over a catalyst in an adiabatic fixed bed reactor to product a reactor effluent and heat. The reaction inside the adiabatic fixed bed reactor occurs at a reaction temperature from about 200° C. to about 375° C. The reactor effluent is then condensed to separate the liquid products and the gaseous products. A separation step then separates the gaseous products into hydrogen and off-gas.
Abstract:
A method of steam reforming where a reaction occurs in which an oxygenated feed contacts a catalyst to produce hydrogen. The catalyst of the reaction comprises a metal/metal promoter on a nickel/transition metal blend catalyst supported on a high-energy lattice metal oxide.
Abstract:
A method of steam reforming where a reaction occurs in which an oxygenated feed contacts a catalyst to produce hydrogen. The catalyst of the reaction comprises a metal/metal promoter on a nickel/transition metal blend catalyst supported on a high-energy lattice metal oxide.
Abstract:
The method begins by forming a solution comprising catalyst precursors, electrolyte and a solvent. Electrodes are inserted into the solution comprising an anode electrode and a cathode electrode. Electrochemical deposition then occurs wherein a current is passed between the electrodes. In this method at least one additional step of: i) heating the solution prior to and during the electrochemical deposition; ii) increasing the concentration of the catalyst precursors in the solution to greater than 0.1 millimolar; iii) performing the electrochemical deposition by a pulsed current; and iv) adding chemical promoters to the solution.
Abstract:
A process is described for flowing an oxygenate feed over a catalyst in an adiabatic fixed bed reactor to product a reactor effluent and heat. The reaction inside the adiabatic fixed bed reactor occurs at a reaction temperature from about 200° C. to about 375° C. The reactor effluent is then condensed to separate the liquid products and the gaseous products. A separation step then separates the gaseous products into hydrogen and off-gas.