摘要:
Disclosed are curable linear polymers that can be used as active and/or passive organic materials in various electronic, optical, and optoelectronic devices. In some embodiments, the device can include an organic semiconductor layer and a dielectric layer prepared from such curable linear polymers. In some embodiments, the device can include a passivation layer prepared from the linear polymers described herein. The present linear polymers can be solution-processed, then cured thermally (particularly, at relatively low temperatures) and/or photochemically into various thin film materials with desirable properties.
摘要:
The present polymeric materials can be patterned with relatively low photo-exposure energies and are thermally stable, mechanically robust, resist water penetration, and show good adhesion to metal oxides, metals, metal alloys, as well as organic materials. In addition, these polymeric materials can be solution-processed (e.g., by spin-coating), and can exhibit good chemical (e.g., solvent and etchant) resistance in the cured form.
摘要:
Disclosed are new methods of fabricating metal oxide thin films and nanomaterial-derived metal composite thin films via solution processes at low temperatures (
摘要:
The present polymeric materials can be patterned with relatively low photo-exposure energies and are thermally stable, mechanically robust, resist water penetration, and show good adhesion to metal oxides, metals, metal alloys, as well as organic materials. In addition, these polymeric materials can be solution-processed (e.g., by spin-coating), and can exhibit good chemical (e.g., solvent and etchant) resistance in the cured form.
摘要:
The present polymeric materials can be patterned with relatively low photo-exposure energies and are thermally stable, mechanically robust, resist water penetration, and show good adhesion to metal oxides, metals, metal alloys, as well as organic materials. In addition, these polymeric materials can be solution-processed (e.g., by spin-coating), and can exhibit good chemical (e.g., solvent and etchant) resistance in the cured form.
摘要:
Disclosed are new methods of fabricating metal oxide thin films and nanomaterial-derived metal composite thin films via solution processes at low temperatures (
摘要:
Disclosed are photocurable polymers that can be used as active and/or passive organic materials in various electronic, optical, and optoelectronic devices. In some embodiments, the device can include a dielectric layer prepared from such photocurable polymers. In some embodiments, the device can include a passivation layer prepared from the polymers described herein.
摘要:
Disclosed are new methods of fabricating metal oxide thin films and nanomaterial-derived metal composite thin films via solution processes at low temperatures (
摘要:
The present invention relates to new semiconducting compounds having at least one optionally substituted bithiophene sulfonamide moiety. The compounds disclosed herein can exhibit high carrier mobility and/or efficient light absorption/emission characteristics, and can possess certain processing advantages such as solution-processability and/or good stability at ambient conditions.