Abstract:
A molded body for an electronic function includes a first film in which one surface thereof constitutes an external appearance surface, a second film in which an electronic component is mounted on a surface thereof facing a surface of the first film opposite to the external appearance surface, and a first resin that fills a space between the first film and the second film. The first resin has a cavity, and the cavity is filled with a second resin, and the electronic component is disposed in the cavity and surrounded by the second resin.
Abstract:
A wiring incorporated resin pipe includes a tubular shaped sheet formed in an approximately tubular shape at an interval so that a slit is formed between both ends in a transverse direction, a wiring unit arranged in the tubular shaped sheet along a longitudinal direction of the slit in an inner side of the slit and a resin material filled in a gap formed by matching surfaces of the slit of the tubular shaped sheet and the wiring unit to thereby seal the matching surfaces of the slit of the tubular shape sheet, in which conductive wires for wiring are laid inside the wiring unit in the longitudinal direction.
Abstract:
A sensor includes a reception antenna, a parasitic antenna terminating in a variable load, a controller, a transmitter transmitting a transmission signal, a receiver, a memory, and a processor. The controller sets an impedance value of the variable load. The receiver receives a first signal formed of signals received by the antennas and derived from the transmission signal, and the signal received by the parasitic antenna corresponding to the impedance value. The memory stores a first signal strength value of the first signal corresponding to the impedance value. The processor sets candidates of a complex propagation channel, calculates second signal strength values of a second signal respectively corresponding to the candidates, estimates a target complex propagation channel by selecting a candidate corresponding to a minimum difference among differences between the first signal strength value and the second signal strength values, and estimates a direction of arrival of the first signal.
Abstract:
A scroll compressor of the present invention includes a partition plate, a fixed scroll, an orbiting scroll, a rotation-restraining member, a main bearing, a discharge space, a ring-shaped first seal member and a ring-shaped second seal member. A pressure in the medium pressure space is set lower than that in the discharge space and higher than that in the low pressure space. The first seal member and the second seal member are sandwiched by the partition plate by means of a closing member, the fixed scroll can move in an axial direction of the fixed scroll between the partition plate and the main bearing. If a high pressure is applied to the discharge space, the fixed scroll can be pressed against the orbiting scroll.
Abstract:
The three-dimensional integrated circuit has a first semiconductor chip and a second semiconductor chip stacked on the first semiconductor chip, wherein each of the first semiconductor chip and the second semiconductor chip is provided with a power supply wiring layer which has a wiring pattern structure for stably supplying a power supply voltage to an internal circuit of the semiconductor chip, and a ground wiring layer in succession, and one of the first semiconductor chip and the second semiconductor chip further includes a second ground wiring layer or a second power supply wiring layer on a surface facing to the other semiconductor chip.
Abstract:
A scroll compressor according to the present invention includes a partition plate that partitions a sealed container into a high-pressure space and a low-pressure space, a fixed scroll adjacent to the partition plate, a orbiting scroll, a rotation restrictor, and a main bearing. The sealed scroll compressor further includes a pillar member having a lower end portion secured in a bearing-side engagement portion provided in the main bearing, and an upper end portion inserted in a scroll-side engagement portion provided in the fixed scroll. The axial distance from the upper end portion of the pillar member to the partition plate is smaller than the length by which the pillar member and the bearing-side engagement portion are coupled together.
Abstract:
A scroll compressor includes partition plate (20) that partitions an inside of sealed container (10) into high-pressure space (11) and low-pressure space (12), and fixed scroll (30) adjacent to partition plate (20). The scroll compressor includes orbiting scroll (40) that meshes with fixed scroll (30) to form compression chamber (50), rotation restrictor (90) that prevents rotation of orbiting scroll (40), and main bearing (60) that supports orbiting scroll (40). Fixed scroll (30), orbiting scroll (40), rotation restrictor (90), and main bearing (60) are disposed in low-pressure space (12), and fixed scroll (30) and orbiting scroll (40) are disposed between partition plate (20) and main bearing (60). The scroll compressor includes bearing coupler (102) provided in main bearing (60), scroll coupler (101) provided in fixed scroll (30), and pillar member (100) having a lower end and an upper end, the lower end being inserted in bearing coupler (102) and the upper end being inserted in scroll coupler (101). A coupling region where pillar member (100) couples with scroll coupler (101) is in intersecting relationship with a horizontal plane positioned at a center of a scroll wrap height of fixed scroll (30).
Abstract:
Disclosed herein is easy and efficient production of a light and strong resin tube. A resin sheet is molded into a tubular form having a gap, and at least the gap portion is sealed with resin to produce a resin tube. This enables easy and efficient production of a light and strong resin tube.
Abstract:
A scroll compressor of the present invention includes a partition plate 20, a fixed scroll 30, an orbiting scroll 40, a rotation-restraining member 90 and a main bearing 60. An inner wall of a fixed spiral lap 32 of the fixed scroll 30 is formed up to a location close to an ending-end of an orbiting spiral lap 42 of the orbiting scroll 40, thereby differentiating, from each other, a containment capacity of one (50A) of compression chambers and a containment capacity of the other compression chamber 50B, the fixed scroll 30 can move in an axial direction of the fixed scroll between the partition plate 20 and a main bearing 60, and high pressure is applied to a discharge space 30H formed between the partition plate 20 and the fixed scroll 30. According to this, the fixed scroll 30 can be pressed against the orbiting scroll 40.