Direct-write nanolithography method of transporting ink with an elastomeric polymer coated nanoscopic tip to form a structure having internal hollows on a substrate
    3.
    发明授权
    Direct-write nanolithography method of transporting ink with an elastomeric polymer coated nanoscopic tip to form a structure having internal hollows on a substrate 失效
    使用弹性体聚合物涂覆的纳米级尖端输送墨水的直写式纳米光刻方法形成在基底上具有内部空洞的结构

    公开(公告)号:US07491422B2

    公开(公告)日:2009-02-17

    申请号:US11056391

    申请日:2005-02-14

    摘要: A novel method of transporting ink to a substrate with dip-pen nanolithographic (DPN) stamp tips coated with polymer (e.g., polydimethylsiloxane (PDMS), etc.). This kind of tip adsorbs chemicals (“inks”) easily and is used to generate DPN nanopatterns that are imaged with the same tip after a DPN process. This method builds a bridge between micro-contact printing (μCP) and DPN, making it possible for one to easily generate smaller structures of any molecules that have been patterned by the μCP technique. The easy tip-coating and writing process enriches the state-of-the-art DPN technique. The sub-100 nm DPN resolution obtained by using this kind of novel tip is comparable to that with a conventional Si3N4 probe tip. Importantly, the unique stamp tip was able to transfer solvent (e.g., liquid “ink”) onto a substrate, resulting in fabrication of hollow nanostructures with only one DPN holding/writing step. Inks comprising metals and sol-gel materials are noted, as well as applications in photomask repair, enhancement, and fabrication.

    摘要翻译: 使用涂覆有聚合物(例如聚二甲基硅氧烷(PDMS)等)的浸笔纳米光刻(DPN)印模尖端将墨输送到基底的新方法。 这种尖端容易吸附化学物质(“油墨”),并用于产生在DPN工艺之后用相同尖端成像的DPN纳米图案。 该方法构建了微接触印刷(muCP)和DPN之间的桥梁,使得可以轻松地生成通过muCP技术图案化的任何分子的较小结构。 简单的涂层和书写过程丰富了最先进的DPN技术。 通过使用这种新型尖端获得的亚100nm DPN分辨率与常规Si 3 N 4探针尖端的分辨率相当。 重要的是,独特的压头能够将溶剂(例如液体“墨”)转移到基底上,从而制造具有仅一个DPN保持/书写步骤的中空纳米结构。 注意到包含金属和溶胶 - 凝胶材料的油墨,以及光掩模修复,增强和制造中的应用。

    Direct-write nanolithography with stamp tips: fabrication and applications
    5.
    发明申请
    Direct-write nanolithography with stamp tips: fabrication and applications 失效
    直写纳米光刻与印章提示:制造和应用

    公开(公告)号:US20050255237A1

    公开(公告)日:2005-11-17

    申请号:US11056391

    申请日:2005-02-14

    摘要: A novel method for fabricating polymer, e.g., polydimethylsiloxane (PDMS),-coated dip-pen nanolithographic (DPN) stamp tips. This kind of tip adsorbed chemicals (“inks”) easily and was used to generate DPN nanopatterns which were imaged with the same tip after DPN process. This method built a bridge between micro-contact printing (μCP) and DPN, making it possible for one to easily generate smaller structures of any molecules which have been patterned by the μCP technique. The easy tip-coating and writing process enriches the state-of-the-art DPN technique. The sub-100 nm DPN resolution obtained by using this kind of novel tip is comparable to that with a conventional Si3N4 probe tip. Importantly, the unique stamp tip was able to transfer solvent (e.g., liquid “ink”) onto a substrate, resulting in fabrication of hollow nanostructures with only one DPN holding/writing step. Inks comprising metals and sol-gel materials are noted, as well as applications in photomask repair, enhancement, and fabrication.

    摘要翻译: 用于制造聚合物的新方法,例如聚二甲基硅氧烷(PDMS)涂覆的浸渍笔纳米光刻(DPN)印记贴片。 这种尖端吸附的化学物质(“油墨”)容易被用来产生DPN纳米图案,DPN纳米图案在DPN工艺后用相同的尖端成像。 该方法构建了微接触印刷(muCP)和DPN之间的桥梁,使得可以容易地生成通过muCP技术图案化的任何分子的较小结构。 简单的涂层和书写过程丰富了最先进的DPN技术。 通过使用这种新颖的尖端获得的亚100nm DPN分辨率与常规的S 3 N 4 N 4探针尖端相当。 重要的是,独特的压头能够将溶剂(例如液体“墨”)转移到基底上,从而制造具有仅一个DPN保持/书写步骤的中空纳米结构。 注意到包含金属和溶胶 - 凝胶材料的油墨,以及光掩模修复,增强和制造中的应用。

    Micrometric direct-write methods for patterning conductive material and applications to flat panel display repair
    6.
    发明申请
    Micrometric direct-write methods for patterning conductive material and applications to flat panel display repair 失效
    用于图案化导电材料的微米直写方法和应用于平板显示器维修

    公开(公告)号:US20050235869A1

    公开(公告)日:2005-10-27

    申请号:US11065694

    申请日:2005-02-25

    IPC分类号: C09D11/00 C09D11/10 H05K3/12

    摘要: A new, low temperature method for directly writing conductive metal traces with micron and sub-micron sized features. In this method, a flat beam is used, such as an AFM cantilever, with or without a tip, to draw traces of metal precursor ink onto a substrate. The dimensions of the metal traces can be directly controlled by the geometry of the cantilever, so that one can controllably deposit traces from 1 micron to over 100 microns wide with microfabricated cantilevers. Cantilevers with sharp tips can be used to further shrink the minimum features sizes to sub-micron scale. The height of the features can be increased by building layers of similar or different material. To obtain highly conductive and robust patterns with this deposition method, two general ink formulation strategies were designed. The key component of both ink systems is nanoparticles with diameters less than 100 nm. Because nanoparticles typically have significantly lower melting points than the bulk material, one can fuse, sinter, or coalesce collections of discrete particles into continuous (poly)crystalline films at very low temperatures (less than about 300° C., and as low as about 120° C.). In the first strategy, one can disperse hydrocarbon-capped nanoparticles in a suitable solvent, deposit them on a surface in the form of a pattern, and then anneal the film by heating to form continuous metallic patterns. In the second strategy, one can deliver metal compounds to the surface in the presence of a reducing matrix and then form nanoparticles in situ by heating that subsequently coalesce to form continuous metallic patterns. In studies with platinum and gold inks, both nanoparticle-based methods yield micron sized traces on glass and oxidized silicon that have low resistivity (4 microohm·cm), and excellent adhesion properties.

    摘要翻译: 一种用于直接写入具有微米和亚微米尺寸特征的导电金属迹线的新的低温方法。 在该方法中,使用平面光束,例如具有或不具有尖端的AFM悬臂,以将金属前体油墨的痕迹绘制到基底上。 金属轨迹的尺寸可以通过悬臂的几何形状直接控制,从而可以通过微加工的悬臂将可追溯的微量线从1微米到100微米宽的沉积物进行控制。 具有尖锐尖端的悬臂可用于进一步将最小特征尺寸缩小至亚微米级。 通过构建相似或不同材料的层可以增加特征的高度。 为了通过该沉积方法获得高导电性和鲁棒性的图案,设计了两种一般的油墨配方策略。 两种油墨系统的关键组分是直径小于100nm的纳米颗粒。 因为纳米颗粒通常具有比散装材料显着更低的熔点,所以可以在非常低的温度(小于约300℃,低至约低于约300℃)下将离散颗粒的集合熔合,烧结或聚结成连续(多)晶体膜 120℃)。 在第一种策略中,可以将烃封端的纳米颗粒分散在合适的溶剂中,将其沉积在图案形式的表面上,然后通过加热退火以形成连续的金属图案。 在第二种策略中,可以在还原性基质的存在下将金属化合物递送到表面,然后通过加热原位形成纳米颗粒,随后聚结形成连续的金属图案。 在使用铂金和金色墨水的研究中,基于纳米粒子的方法都会在玻璃上产生微米尺寸的痕迹和具有低电阻率(4微欧姆·厘米)的氧化硅,并具有优异的粘合性能。