Abstract:
A semiconductor device and method making it utilize a three-dimensional channel region comprising a core of a first semiconductor material and an epitaxial covering of a second semiconductor material. The first and second semiconductor materials have respectively different lattice constants, thereby to create a strain in the epitaxial covering. The devices are formed by a gate-last process, so that the second semiconductor material is deposited only after the high temperature processes have been performed. Consequently, the lattice strain is not substantially relaxed, and the improved performance benefits of the lattice strained channel region are not compromised.
Abstract:
A semiconductor device and method making it comprises pFETs with an SiGe channel and nFETs with an Si channel, formed on an SOI substrate. Improved uniformity of fin height and width is attained by forming the fins additively by depositing an SiGe layer on the SOI substrate and forming first fins from the superposed SiGe layer and underlying thin Si film of the SOI substrate. Second fins of Si can then be formed by replacing the upper SiGe portions of selected first fins with Si.
Abstract:
A semiconductor device and method making it utilize a three-dimensional channel region comprising a core of a first semiconductor material and an epitaxial covering of a second semiconductor material. The first and second semiconductor materials have respectively different lattice constants, thereby to create a strain in the epitaxial covering. The devices are formed by a gate-last process, so that the second semiconductor material is deposited only after the high temperature processes have been performed. Consequently, the lattice strain is not substantially relaxed, and the improved performance benefits of the lattice strained channel region are not compromised.
Abstract:
To realize a transistor of normally-off type having a high mobility and a high breakdown voltage. A compound semiconductor layer is formed over a substrate, has both a concentration of p-type impurities and a concentration of n-type impurities less than 1×1016/cm3, and includes a group III nitride compound. A well is a p-type impurity layer and formed in the compound semiconductor layer. A source region is formed within the well and is an n-type impurity layer. A low-concentration n-type region is formed in the compound semiconductor layer and is linked to the well. A drain region is formed in the compound semiconductor layer and is located on a side opposite to the well via the low-concentration n-type region. The drain region is an n-type impurity layer.
Abstract:
Disclosed is a semiconductor device that reduces the area of a transistor in a ReRAM. A plurality of memory cells differ from each other in the combination of bit line and plate line. The potential of plate line PL2 is a forming voltage. By contrast, the potentials of the other plate lines are +Vi. The potential of bit line BL2 is 0 V (ground potential). By contrast, the potentials of the other bit lines are +Vi. The potential of is +Vgf. By contrast, the potentials of the other word lines are +Vi.
Abstract:
A semiconductor device, includes a substrate, a source structure and a drain structure formed on the substrate. At least one interconnect structure interconnects the source structure and the drain structure and serves as a channel therebetween. A gate structure is formed over the at least one interconnect structure to provide a control of a conductivity of carriers in the channel. Each of the interconnect structures include a center core serving as a backbias electrode for the channel.
Abstract:
A semiconductor device includes a substrate and a source structure and a drain structure formed on the substrate. At least one nanowire structure interconnects the source structure and drain structure and serves as a channel therebetween. A gate structure is formed over said at least one nanowire structure to provide a control of a conductivity of carriers in the channel, and the nanowire structure includes a center core serving as a backbias electrode for the channel.