Abstract:
A TDI scanner including a dynamically programmable focal plane array including a two-dimensional array of detectors arranged in a plurality of columns and a plurality of rows, the array being divided into a plurality of banks separated from one another by gap regions, each bank including a plurality of sub-banks, and each sub-bank including at least one row of detectors, a ROIC coupled to the focal plane array and configured to combine in a TDI process outputs from detectors in each column of detectors in each sub-bank, and a controller configured to program the focal plane array to selectively and dynamically set characteristics of the focal plane array, the characteristics including a size and a location within the two-dimensional array of each of the plurality of sub-banks and the gap regions, the size corresponding to a number of rows of detectors included in the respective sub-bank or gap region.
Abstract:
According to one aspect, embodiments herein provide a unit cell comprising a photodiode, a MOSCap having an input node coupled to the photodiode, a reset switch selectively coupled between the MOSCap and a reset voltage, and a transistor coupled to the input node of the MOSCap, wherein, in a first mode of operation of the unit cell, the reset switch is configured in an open state and charge generated by light incident on the photodiode accumulates at the input node of the MOSCap in response to voltage at the input node being less than a threshold voltage, and wherein, in a second mode of operation of the unit cell, the reset switch is configured in the open state and the charge generated by the light incident on the photodiode accumulates on the MOSCap in response to the voltage at the input node being greater than the threshold voltage.
Abstract:
According to one aspect, embodiments herein provide a unit cell comprising a photodiode, a MOSCap having an input node coupled to the photodiode, a reset switch selectively coupled between the MOSCap and a reset voltage, and a transistor coupled to the input node of the MOSCap, wherein, in a first mode of operation of the unit cell, the reset switch is configured in an open state and charge generated by light incident on the photodiode accumulates at the input node of the MOSCap in response to voltage at the input node being less than a threshold voltage, and wherein, in a second mode of operation of the unit cell, the reset switch is configured in the open state and the charge generated by the light incident on the photodiode accumulates on the MOSCap in response to the voltage at the input node being greater than the threshold voltage.
Abstract:
A focal plane array having: an imaging array section, comprising: an array of electromagnetic radiation detectors; and an address section providing outputs from selectively enabled detectors. The imaging array section comprises a plurality of circuit blocks, each one of the circuit blocks having a primary circuit and a redundant circuit. Test circuitry is for provided for supplying test signals to test each one of the primary circuits and determining whether a response from the test signals is proper or improper and for storing in the test circuitry in response to such determining select signals associated with each one of the tested circuit blocks. An array controller is provided for, during a subsequent normal operating mode, providing timing pulses to the address section wherein the address section selectively enables the detectors using either the primary or redundant circuits in the plurality of circuit blocks selectively in accordance with the stored select signals.
Abstract:
An apparatus includes a photodetector configured to generate an electrical current based on received illumination. The apparatus also includes a capacitor transimpedance amplifier (CTIA) unit cell having (i) an amplifier configured to receive the electrical current and a first reference voltage and generate a pre-integration voltage, (ii) a feedback capacitor coupled in parallel across the amplifier, (iii) a reset switch coupled in parallel across the feedback capacitor, and (iv) a coupling capacitor coupled to an output of the amplifier and configured to receive the pre-integration voltage and generate an integration voltage. The apparatus further includes a comparator configured to compare the pre-integration voltage and a second reference voltage, where generation of the integration voltage is modifiable based on the comparison.
Abstract:
An apparatus includes a photodetector configured to generate an electrical current based on received illumination. The apparatus also includes a capacitor transimpedance amplifier (CTIA) unit cell configured to generate an integration voltage based on the electrical current. The CTIA unit cell includes (i) an amplifier configured to receive the electrical current and a first reference voltage, (ii) a feedback capacitor coupled in parallel across the amplifier, and (iii) a reset switch coupled in parallel across the feedback capacitor. The apparatus further includes a comparator configured to compare an input voltage of the amplifier and a second reference voltage, where generation of the integration voltage is modifiable based on the comparison.
Abstract:
An apparatus includes a photodetector configured to generate an electrical current based on received illumination. The apparatus also includes a capacitor transimpedance amplifier (CTIA) unit cell having (i) an amplifier configured to receive the electrical current and a reference voltage, (ii) a feedback capacitor coupled in parallel across the amplifier, and (iii) a reset switch coupled in parallel across the feedback capacitor. The apparatus further includes an event detector configured to sense a high-energy event affecting the photodetector. In addition, the apparatus includes a switchable clamp coupled across inputs of the amplifier, where the event detector is configured to close the switchable clamp in response to sensing the high-energy event.
Abstract:
An image capturing device is provided, which includes a capacitive trans-impedance amplifier (CTIA) unit cell. The CTIA unit cell includes an image detector and a switching network. The image detector is configured to detect light having a first color and light having a second color different from the first color, and to generate a photocurrent in response to detecting the light. The switching network includes a CTIA switch, a CTIA low reset switch, and a CTIA high-reset biasing switch. The CTIA switch sets a first reset level of the CTIA unit cell to a first voltage in response invoking a first switching state of the CTIA low-reset switch and sets a second reset level of the CTIA to a second voltage greater than the first voltage level in response to invoking a second switching state of the CTIA low-reset switch.
Abstract:
According to one embodiment, a circuit comprises a Capacitive Trans-Impedance Amplifier (CTIA) configured to receive a current pulse at an input and convert the current pulse to a voltage step. The voltage step is directed to a first signal path and a second signal path. When the voltage step exceeds a first threshold, the first signal path directs an enable pulse to the second signal path. The second signal path generates an output pulse when the voltage step exceeds a second threshold and the enable pulse is enabled. The second signal path comprises a first, a second, and a third amplifier to increase detection of the voltage step by the second signal path.
Abstract:
According to one embodiment, a circuit comprises a Capacitive Trans-Impedance Amplifier (CTIA) configured to receive a current pulse at an input and convert the current pulse to a voltage step. The voltage step is directed to a first signal path and a second signal path. When the voltage step exceeds a first threshold, the first signal path directs an enable pulse to the second signal path. The second signal path generates an output pulse when the voltage step exceeds a second threshold and the enable pulse is enabled. The second signal path comprises a first, a second, and a third amplifier to increase detection of the voltage step by the second signal path.