摘要:
A polishing pad comprises at least a first layer having a first main surface serving to polish a substrate to be polished and a second main surface, and a second layer positioned to face the second main surface of the first layer and having fine bags arranged therein, fluid being hermetically sealed in the fine bag.
摘要:
A method for manufacturing a semiconductor device is provided, which includes forming a coated film by coating a solution containing a solvent and an organic component above an insulating film located above a semiconductor substrate and having a recess, baking the coated film at a first temperature which does not accomplish cross-linking of the organic component to obtain an organic film precursor, polishing the organic film precursor using a first slurry containing first resin particles and a water-soluble polymer to planarize a surface of the organic film precursor, and polishing the organic film precursor where the surface is planarized using a second slurry containing second resin particles and a water-soluble polymer to leave the organic film precursor in the recess, thereby exposing the insulating film, an average particle diameter of the second resin particles being smaller than that of the first resin particles.
摘要:
A method for manufacturing a semiconductor device is provided, the method includes forming a coated film by coating a solution containing a solvent and an organic component above an insulating film located above a semiconductor substrate and having a recess, baking the coated film at a first temperature which does not accomplish cross-linking of the organic component to obtain an organic film precursor, polishing the organic film precursor using a slurry containing resin particles to leave the organic film precursor in the recess, baking the left organic film precursor at a second temperature which is higher than the first temperature to remove the solvent to obtain a first organic film embedded in the recess, forming a second organic film on the insulating film, thereby obtaining an underlying film, forming an intermediate layer and a resist film successively above the underlying film, and subjecting the resist film to patterning exposure.
摘要:
A method for manufacturing a semiconductor device is provided, the method includes forming a coated film by coating a solution containing a solvent and an organic component above an insulating film located above a semiconductor substrate and having a recess, baking the coated film at a first temperature which does not accomplish cross-linking of the organic component to obtain an organic film precursor, polishing the organic film precursor using a slurry containing resin particles to leave the organic film precursor in the recess, baking the left organic film precursor at a second temperature which is higher than the first temperature to remove the solvent to obtain a first organic film embedded in the recess, forming a second organic film on the insulating film, thereby obtaining an underlying film, forming an intermediate layer and a resist film successively above the underlying film, and subjecting the resist film to patterning exposure.
摘要:
An apparatus polishes an object material such as a film on a substrate. This apparatus includes a polishing table for holding a polishing pad having a polishing surface, a motor configured to drive the polishing table, a holding mechanism configured to hold a substrate having an object material to be polished and to press the substrate against the polishing surface, a dresser configured to dress the polishing surface, and a monitoring unit configured to monitor a removal amount of the object material. The monitoring unit is operable to calculate the removal amount of the object material using a model equation containing a variable representing an integrated value of a torque current of the motor when polishing the object material and a variable representing a cumulative operating time of the dresser.
摘要:
Post-CMP treating liquids are provided, one of which includes water, an amphoteric surfactant, an anionic surfactant, a complexing agent, resin particles having carboxylic group and sulfonyl group on their surfaces, a primary particle diameter thereof ranging from 10 to 60 nm, and tetramethyl ammonium hydroxide. Another includes water, polyphenol, an anionic surfactant, ethylene diamine tetraacetic acid, resin particles having carboxylic group and sulfonyl group on their surfaces, a primary particle diameter thereof ranging from 10 to 60 nm, and tetramethyl ammonium hydroxide. Both of the treating liquids have a pH ranging from 4 to 9, and exhibit a polishing rate both of an insulating film and a conductive film at a rate of 10 nm/min or less.
摘要:
There is disclosed a chemical mechanical polishing method of an organic film comprising forming the organic film above a semiconductor substrate, contacting the organic film formed above the semiconductor substrate with a polishing pad attached to a turntable, and dropping a slurry onto the polishing pad to polish the organic film, the slurry being selected from the group consisting of a first slurry and a second slurry, the first slurry comprising a resin particle having a functional group selected from the group consisting of an anionic functional group, a cationic functional group, an amphoteric functional group and a nonionic functional group, and having a primary particle diameter ranging from 0.05 to 5 μm, the first slurry having a pH ranging from 2 to 8, and the second slurry comprising a resin particle having a primary particle diameter ranging from 0.05 to 5 μm, and a surfactant having a hydrophilic moiety.
摘要:
A substrate holding mechanism, a substrate polishing apparatus and a substrate polishing method have functions capable of minimizing an amount of heat generated during polishing of a substrate to be polished and of effectively cooling a substrate holding part of the substrate holding mechanism, and also capable of effectively preventing a polishing solution and polishing dust from adhering to an outer peripheral portion of the substrate holding part and drying thereon. The substrate holding mechanism has a mounting flange, a support member 6 and a retainer ring. A substrate to be polished is held on a lower side of the support member surrounded by the retainer ring, and the substrate is pressed against a polishing surface of a polishing table. The mounting flange is provided with a flow passage contiguous with at least the retainer ring. A temperature-controlled gas is supplied through the flow passage to cool the mounting flange, the support member and the retainer ring. The retainer ring is provided with a plurality of through-holes communicating with the flow passage to spray the gas flowing through the flow passage onto the polishing surface of the polishing table.
摘要:
There is disclosed a chemical mechanical polishing method of an organic film comprising forming the organic film above a semiconductor substrate, contacting the organic film formed above the semiconductor substrate with a polishing pad attached to a turntable, and dropping a slurry onto the polishing pad to polish the organic film, the slurry being selected from the group consisting of a first slurry and a second slurry, the first slurry comprising a resin particle having a functional group selected from the group consisting of an anionic functional group, a cationic functional group, an amphoteric functional group and a nonionic functional group, and having a primary particle diameter ranging from 0.05 to 5 μm, the first slurry having a pH ranging from 2 to 8, and the second slurry comprising a resin particle having a primary particle diameter ranging from 0.05 to 5 μm, and a surfactant having a hydrophilic moiety.
摘要:
A semiconductor device comprises a semiconductor substrate, an interlayer insulating film including a first insulating film formed above the substrate and having a relative dielectric constant smaller than 2.5 and a second insulating film formed to cover the first insulating film and having a relative dielectric constant larger than that of the first insulating film, and a buried wiring formed within the interlayer insulating film. A bottom portion of the second insulating film is buried in the first insulating film at a number of points.