摘要:
A multichip semiconductor device is disclosed in which chips are stacked each of which comprises a semiconductor substrate formed on top with circuit components and an interlayer insulating film formed on the top of the semiconductor substrate. At least one of the chips has a connect plug of a metal formed in a through hole that passes through the semiconductor substrate and the interlayer insulating film. The chip with the connect plug is electrically connected with another chip by that connect plug.
摘要:
A multichip semiconductor device is disclosed in which chips are stacked each of which comprises a semiconductor substrate formed on top with circuit components and an interlayer insulating film formed on the top of the semiconductor substrate. At least one of the chips has a connect plug of a metal formed in a through hole that passes through the semiconductor substrate and the interlayer insulating film. The chip with the connect plug is electrically connected with another chip by that connect plug.
摘要:
A multichip semiconductor device is disclosed in which chips are stacked each of which comprises a semiconductor substrate formed on top with circuit components and an interlayer insulating film formed on the top of the semiconductor substrate. At least one of the chips has a connect plug of a metal formed in a through hole that passes through the semiconductor substrate and the interlayer insulating film. The chip with the connect plug is electrically connected with another chip by that connect plug.
摘要:
A multichip semiconductor device is disclosed in which chips are stacked each of which comprises a semiconductor substrate formed on top with circuit components and an interlayer insulating film formed on the top of the semiconductor substrate. At least one of the chips has a connect plug of a metal formed in a through hole that passes through the semiconductor substrate and the interlayer insulating film. The chip with the connect plug is electrically connected with another chip by that connect plug.
摘要:
A plating method and apparatus for a substrate fills a metal, e.g., copper, into a fine interconnection pattern formed in a semiconductor substrate. The apparatus has a substrate holding portion 36 horizontally holding and rotating a substrate with its surface to be plated facing upward. A seal material 90 contacts a peripheral edge portion of the surface, sealing the portion in a watertight manner. A cathode electrode 88 passes an electric current upon contact with the substrate. A cathode portion 38 rotates integrally with the substrate holding portion 36. An electrode arm portion 30 is above the cathode portion 38 and movable horizontally and vertically and has an anode 98 face-down. Plating liquid is poured into a space between the surface to be plated and the anode 98 brought close to the surface to be plated. Thus, plating treatment and treatments incidental thereto can be performed by a single unit.
摘要:
A multichip semiconductor device is disclosed in which chips are stacked each of which comprises a semiconductor substrate formed on top with circuit components and an interlayer insulating film formed on the top of the semiconductor substrate. At least one of the chips has a connect plug of a metal formed in a through hole that passes through the semiconductor substrate and the interlayer insulating film. The chip with the connect plug is electrically connected with another chip by that connect plug.
摘要:
There is provided a semiconductor device including a semiconductor substrate and a conductive layer above the semiconductor substrate, wherein the conductive layer contains copper, a surface region of the conductive layer contains at least one of C—H bonds and C—C bonds, and a total amount of C atoms forming the C—H bonds and C atoms forming the C—C bonds in the surface region is 30 atomic % or more of a whole amount of elements in the surface region.
摘要:
The present invention provides a method of manufacturing a semiconductor device, including the steps of forming a first film on an entire surface of a substrate having a recessed portion, including a bottom surface and a side wall of the recessed portion, without completely filling the recessed portion, forming a second film on an entire surface of the first film such that the recessed portion, on the bottom surface and the side wall of which the first film is formed, is completely filled, and polishing the first and second films by a chemical-mechanical polishing method such that the substrate is exposed and the first and second films in the recessed portion remain.
摘要:
According to this invention, there is provided a method of forming a groove wiring layer, including the steps of forming a metal oxide film, consisting of a metal oxide having a decrease in standard free energy smaller than a decrease in standard free energy of a hydrogen oxide or of a carbon oxide, on an insulating film formed on a semiconductor substrate, and reducing the metal oxide film to form an electrode-wiring layer consisting of a metal which is a main component constituting the metal oxide. In this manner, an electrode-wiring layer having high EM and SM resistances without causing an increase in electric resistivity caused by an impurity or the like can be obtained.
摘要:
A plating method and apparatus for a substrate fills a metal, e.g., copper, into a fine interconnection pattern formed in a semiconductor substrate. The apparatus has a substrate holding portion 36 horizontally holding and rotating a substrate with its surface to be plated facing upward. A seal material 90 contacts a peripheral edge portion of the surface, sealing the portion in a watertight manner. A cathode electrode 88 passes an electric current upon contact with the substrate. A cathode portion 38 rotates integrally with the substrate holding portion 36. An electrode arm portion 30 is above the cathode portion 38 and movable horizontally and vertically and has an anode 98 face-down. Plating liquid is poured into a space between the surface to be plated and the anode 98 brought close to the surface to be plated. Thus, plating treatment and treatments incidental thereto can be performed by a single unit.