摘要:
A III-nitride bidirectional switch which includes an AlGaN/GaN interface that obtains a high current currying channel. The bidirectional switch operates with at least one gate that prevents or permits the establishment of a two dimensional electron gas to form the current carrying channel for the bidirectional switch.
摘要:
III-nitride materials are used to form isolation structures in high voltage ICs to isolate low voltage and high voltage functions on a monolithic power IC. Critical performance parameters are improved using III-nitride materials, due to the improved breakdown performance and thermal performance available in III-nitride semiconductor materials. An isolation structure may include a dielectric layer that is epitaxially grown using a III-nitride material to provide a simplified manufacturing process. The process permits the use of planar manufacturing technology to avoid additional manufacturing costs. High voltage power ICs have improved performance in a smaller package in comparison to corresponding silicon structures.
摘要:
A semiconductor device which includes a laterally extending stack of laterally adjacent conductive semiconductor regions formed over a support surface of a substrate, and a method for fabricating the device.
摘要:
A III-nitride trench device has a vertical conduction region with an interrupted conduction channel when the device is not on, providing an enhancement mode device. The trench structure may be used in a vertical conduction or horizontal conduction device. A gate dielectric provides improved performance for the device by being capable of withstanding higher electric field or manipulating the charge in the conduction channel. A passivation of the III-nitride material decouples the dielectric from the device to permit lower dielectric constant materials to be used in high power applications.
摘要:
III-nitride materials are used to form isolation structures in high voltage ICs to isolate low voltage and high voltage functions on a monolithic power IC. Critical performance parameters are improved using III-nitride materials, due to the improved breakdown performance and thermal performance available in III-nitride semiconductor materials. An isolation structure may include a dielectric layer that is epitaxially grown using a III-nitride material to provide a simplified manufacturing process. The process permits the use of planar manufacturing technology to avoid additional manufacturing costs. High voltage power ICs have improved performance in a smaller package in comparison to corresponding silicon structures.
摘要:
A semiconductor device composed of III-nitride materials is produced with epitaxial growth that permits vertical and lateral growth geometries to improve device characteristics. The resulting device has a greater breakdown voltage due to the greater integrity of the semiconductor material structure since no ion implantation processes are used. The epitaxially grown layers also exhibit greater thermal conductivity for improved operation with power semiconductor devices. The device may include a laterally grown charge compensated area to form a superjunction device. The resulting device may be bidirectional and have improved breakdown voltage in addition to higher current capacity for a given voltage rating.
摘要:
A III-nitride trench device has a vertical conduction region with an interrupted conduction channel when the device is not on, providing an enhancement mode device. The trench structure may be used in a vertical conduction or horizontal conduction device. A gate dielectric provides improved performance for the device by being capable of withstanding higher electric field or manipulating the charge in the conduction channel. A passivation of the III-nitride material decouples the dielectric from the device to permit lower dielectric constant materials to be used in high power applications.