摘要:
A method for fabricating a transparent conductive oxide thin film, the method comprising the following steps: fabricating Ba1-xLaxSnO3 using a solid-phase reaction method to obtain a BLSO magnetron sputtering target material; and fabricating a BLSO thin film by means of direct deposition with argon as a sputtering gas by using a SrTiO3, MgO, LaAlO3, (La,Sr)(Al,Ta)O3(LSAT), MgAl2O4 or Al2O3 single crystal substrate and the BLSO magnetron sputtering target material, such that the transparent conductive oxide thin film is fabricate is provided. During sputtering, the temperature of the substrate is 750° C.-950° C., and the deposition pressure of the Ar gas is 25-77 Pa. The room-temperature mobility of the transparent conductive oxide thin film can reach 115 cm2/V·s, the room-temperature carrier concentration can reach 1.2×1021 cm−3, and the room-temperature conductivity can reach 14,000 S/cm.
摘要:
An object of the present invention is to provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation. In order to solve the above problems, the present invention provides a method for producing SiC single crystals, including a stress reduction step of heating a SiC single crystal at 1800° C. or higher in an atmosphere containing Si and C elements to reduce internal stress in the SiC single crystal. With this configuration, the present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.
摘要:
A manufacturing method for a group-III nitride crystal, the manufacturing method includes: preparing a seed substrate; increasing temperature of the seed substrate placed in a nurturing chamber; and supplying a group-III element oxide gas produced in a raw material chamber connected to the nurturing chamber by a connecting pipe and a nitrogen element-containing gas into the nurturing chamber to grow a group-III nitride crystal on the seed substrate, wherein a flow amount y of a carrier gas supplied into the raw material chamber at the temperature increase step satisfies following two relational equations (I) and (II), y
摘要:
A deposition system is disclosed that allows for growth of inclined c-axis piezoelectric material structures. The system integrates various sputtering modules to yield high quality films and is designed to optimize throughput lending it to a high-volume in manufacturing environment. The system includes two or more process modules including an off-axis module constructed to deposit material at an inclined c-axis and a longitudinal module constructed to deposit material at normal incidence; a central wafer transfer unit including a load lock, a vacuum chamber, and a robot disposed within the vacuum chamber and constructed to transfer a wafer substrate between the central wafer transfer unit and the two or more process modules; and a control unit operatively connected to the robot.
摘要:
An object of the present invention is to provide a novel technique capable of suppressing the occurrence of cracks in the growth layer. The present invention is a method for manufacturing a semiconductor substrate, which includes: an embrittlement processing step S10 of reducing strength of an underlying substrate 10; and a crystal growth step S20 of forming the growth layer 20 on the underlying substrate 10. In addition, the present invention is a method for suppressing the occurrence of cracks in the growth layer 20, and this method includes an embrittlement processing step S10 of reducing the strength of the underlying substrate 10 before forming the growth layer 20 on the underlying substrate 10.
摘要:
A method of making high quality insulating single crystalline In2Se3 films by (1) depositing at least one quintuple layer (QL) of Bi2Se3 on a substrate layer at a temperature below which only the Se adheres to the substrate; (2) depositing a plurality of In2Se3 QL's on the deposited Bi2Se3 layer or layers at a temperature between about 200° C. and about 330° C. to form a hetero-structure; and (3) heating the hetero-structure to a temperature between about 400° C. and about 700° C. so that the Bi2Se3 layer is diffused through the In2Se3 layer and evaporated away.
摘要:
A method of forming an epitaxial layer to increase flatness of an epitaxial silicon wafer is provided. In particular, a method of controlling the epitaxial layer thickness in a peripheral part of the wafer is provided. An apparatus for manufacturing an epitaxial wafer by growing an epitaxial layer with reaction of a semiconductor wafer and a source gas in a reaction furnace comprising: a pocket in which the semiconductor wafer is placed; a susceptor fixing the semiconductor; orientation-dependent control means dependent on a crystal orientation of the semiconductor wafer and/or orientation-independent control means independent from the crystal orientation of the semiconductor wafer, wherein the apparatus may improve flatness in a peripheral part of the epitaxial layer.
摘要:
A production method of a SiC crystal includes the following steps. That is, there is prepared a production device including a crucible and a heat insulator covering an outer circumference of the crucible. A source material is placed in the crucible. A seed crystal is placed opposite to the source material in the crucible. The silicon carbide crystal is grown by heating the source material in the crucible for sublimation thereof and depositing resultant source material gas on the seed crystal. The step of preparing the production device includes the step of providing a heat dissipation portion, which is constituted by a space, between the heat insulator and an outer surface of the crucible at a side of the seed crystal.
摘要:
A method of forming an epitaxial layer to increase flatness of an epitaxial silicon wafer is provided. In particular, a method of controlling the epitaxial layer thickness in a peripheral part of the wafer is provided. An apparatus for manufacturing an epitaxial wafer by growing an epitaxial layer with reaction of a semiconductor wafer and a source gas in a reaction furnace comprising: a pocket in which the semiconductor wafer is placed; a susceptor fixing the semiconductor; orientation-dependent control means dependent on a crystal orientation of the semiconductor wafer and/or orientation-independent control means independent from the crystal orientation of the semiconductor wafer, wherein the apparatus may improve flatness in a peripheral part of the epitaxial layer.