摘要:
A spin valve magnetoresistive (SVMR) sensor uses a laminated antiparallel (AP) pinned layer in combination with an improved antiferromagnetic (AF) exchange biasing layer. The pinned layer comprises two ferromagnetic films separated by a nonmagnetic coupling film such that the magnetizations of the two ferromagnetic films are strongly coupled together antiferromagnetically in an antiparallel orientation. This laminated AP pinned layer is magnetically rigid in the small field excitations required to rotate the SVMR sensor's free layer. When the magnetic moments of the two ferromagnetic layers in this AP pinned layer are nearly the same, the net magnetic moment of the pinned layer is small. However, the exchange field is correspondingly large because it is inversely proportional to the net magnetic moment. The laminated AP pinned layer has its magnetization fixed or pinned by an AF material that is highly corrosion resistant but that has an exchange anisotropy too low to be usable in conventional SVMR sensors. In the preferred embodiment the AF layer is nickel-oxide and is formed on one of the magnetoresistive (MR) shields that serves as the substrate. Thus the AF material also serves as the insulating MR gap material. The location of the AF layer and the laminated AP-pinned layer to which it is exchange coupled on the bottom of the SVMR sensor allows for improved longitudinal biasing of the free layer when the SVMR sensor is fabricated.
摘要:
An atomic force microscope (AFM) uses a spin valve magnetoresistive strain gauge formed on the AFM cantilever to detect deflection of the cantilever. The spin valve strain gauge operates in the absence of an applied magnetic field. The spin valve strain gauge is formed on the AFM cantilever as a plurality of films, one of which is a free ferromagnetic layer that has nonzero magnetostriction and whose magnetic moment is free to rotate in the presence of an applied magnetic field. In the presence of an applied stress to the free ferromagnetic layer due to deflection of the cantilever, an angular displacement of the magnetic moment of the free ferromagnetic layer occurs, which results in a change in the electrical resistance of the spin valve strain gauge. Electrical resistance detection circuitry coupled to the spin valve strain gauge is used to determine cantilever deflection.
摘要:
Sensors based on the giant magnetoresistance effect, specifically "spin valve" (SV) magnetoresistive sensors, have applications as external magnetic field sensors and as read heads in magnetic recording systems, such as rigid disk drives. These sensors have a ferromagnetic layer whose magnetization orientation is fixed or pinned by being exchange coupled to an antiferromagnetic layer. The magnetization of the pinned layer will become misaligned and the sensor will experience an abnormal response to the field being sensed, i.e., the external magnetic field or the recorded data in the magnetic media, if an adverse event elevates the antiferromagnetic layer above its blocking temperature. A pinned layer mangetization reset system is incorporated into systems that use SV sensors. The reset system generates an electrical current waveform that is directed through the SV sensor with an initial current value sufficient to heat the antiferromagnetic layer above its blocking temperature, and a subsequent lower current value to generate a magnetic field around the pinned layer sufficient to properly orient the magnetization of the pinned layer while the antiferromagnetic layer is cooling below its blocking temperature. This process resets the magnetization of the pinned layer to its preferred orientation and returns the SV sensor response substantially back to its desired state.
摘要:
The current invention provides for magnetic sensor devices with reduced gap thickness and improved thermal conductivity. Gap structures of the current invention are integrated in laminated Magneto-Resistive and Spin-Valve sensors used in magnetic data storage systems. The gap structures are produced by depositing metal layers and oxidizing portions of or all of the metal layers to form thin high quality oxidized metal dielectric separator layers. The oxidized metal layer provides for excellent electrical insulation of the sensor element and any remaining metallic portions of the metal layers provide a thermally conducting pathway to assist the dissipation of heat generated by the sensor element. Because of the combined qualities of electrical insulation and thermal conductivity, magnetic sensor devices of this invention can be made with thinner gap structures and operated at higher drive currents. Further, oxidized metal layers provide suitable surfaces to growing oxidized metal gap insulator layers of any thickness.
摘要:
A longitudinal bias structure to be placed adjacent a ferromagnetic free layer or a sense layer which is responsive to an external magnetic field and belongs to a magnetic sensor, for example a magnetic readback sensor such as an anisotropic magnetoresistive (AMR) sensor, giant magnetoresistive (GMR) sensor such as GMR spin valve sensor or GMR multilayer sensor or in tunnel valve sensor. The longitudinal bias structure is built up of a top ferromagnetic bias layer of first thickness t1 having a first magnetic moment M1, a bottom ferromagnetic bias layer of second thickness t2 having a second magnetic moment M2 which is anti-parallel to first magnetic moment M1 of the top ferromagnetic bias layer, and an exchange-coupling layer disposed between the top and bottom bias layers. In this configuration the top ferromagnetic bias layer and the bottom ferromagnetic bias layer are antiferromagnetically coupled by the exchange-coupling layer and the remnant magnetization thickness product of the bias structure is desirably low and equal to M1t1−M2t2. The longitudinal bias structure can further include an antiferromagnetic layer next to one of the ferromagnetic bias layers to provide a pinned longitudinal bias structure.
摘要:
A spin accumulation sensor having a three terminal design that allows the free layer to be located at the air bearing surface. A non-magnetic conductive spin transport layer extends from a free layer structure (located at the ABS) to a reference layer structure removed from the ABS. The sensor includes a current or voltage source for applying a current across a reference layer structure. The current or voltage source has a lead that is connected with the non-magnetic spin transport layer and also to electric ground. Circuitry for measuring a signal voltage measures a voltage between a shield that is electrically connected with the free layer structure and the ground. The free layer structure can include a spin diffusion layer that ensures that all spin current is completely dissipated before reaching the lead to the voltage source, thereby preventing shunting of the spin current to the voltage source.
摘要:
A magnetic head having a magnetic wiggler structure for initiating a high frequency magnetic oscillation in a magnetic to improve media-writeability and increase data density. The wiggler structure includes a plurality of magnetic layers that are antiparallel coupled with one another across non-magnetic antiparallel coupling layers. The wiggler structure is arranged just up-track from the point of data writing so that the high frequency oscillation is initiated just prior to the writing of data on the magnetic media.
摘要:
A method, apparatus, and system are provided for implementing spin-torque oscillator (STO) sensing with a demodulator for hard disk drives. The demodulator measures an instantaneous phase of the readback signal from a STO sensor and converts the readback signal into a signal that is proportional to the magnetic field affecting the STO frequency during a bit time. The converted signal is used for processing by conventional data detection electronics.
摘要:
A spin-torque oscillator (STO) has a single free ferromagnetic layer that forms part of both a giant magnetoresistance (GMR) structure with a nonmagnetic conductive spacer layer and a tunneling magnetoresistance (TMR) structure with a tunnel barrier layer. The STO has three electrical terminals that connect to electrical circuitry that provides a spin-torque excitation current through the conductive spacer layer and a lesser sense current through the tunnel barrier layer. When the STO is used as a magnetic field sensor, the excitation current causes the magnetization of the free layer to oscillate at a fixed base frequency in the absence of an external magnetic field. A detector coupled to the sense current detects shifts in the free layer magnetization oscillation frequency from the base frequency in response to external magnetic fields.
摘要:
A Lorentz magnetoresistive sensor having integrated signal amplification. The sensor is constructed upon a substrate such as a semiconductor material, and an amplification circuit such as transistor is constructed directly into the substrate on which the magnetoresistive device is constructed. This integrated signal amplification greatly enhances sensor performance by eliminating a great deal of signal noise that would otherwise be added to the read signal.