摘要:
A magnetic tunnel junction magnetoresistive read head has one fixed ferromagnetic layer and one generally rectangularly shaped sensing ferromagnetic layer on opposite sides of the tunnel barrier layer, and a biasing ferromagnetic layer located around the side edges and back edges of the sensing ferromagnetic layer. An electrically insulating layer separates the biasing layer from the edges of the sensing layer. The biasing layer is a continuous boundary biasing layer that has side regions and a back region to surround the three edges of the sensing layer. When the biasing layer is a single layer with contiguous side and back regions its magnetic moment can be selected to make an angle with the long edges of the sensing layer. In this manner the biasing layer provides both a transverse bias field to compensate for transverse ferromagnetic coupling and magnetostatic coupling fields acting on the sensing layer to thus provide for a linear response of the head and a longitudinal bias field to stabilize the head. The biasing layer may also be formed with discrete side regions and a back region. The discrete side regions may have a magnetic moment oriented in a different direction from the moment of the back region in order to provide the correct combination of transverse and longitudinal bias fields.
摘要:
A magnetic tunnel junction (MTJ) magnetoresistive read head for a magnetic recording system has the MTJ sensing or free ferromagnetic layer also functioning as a flux guide to direct magnetic flux from the magnetic recording medium to the tunnel junction. The MTJ fixed ferromagnetic layer has its front edge recessed from the sensing surface of the head. Both the fixed and free ferromagnetic layers are in contact with opposite surfaces of the MTJ tunnel barrier layer but the free ferromagnetic layer extends beyond the back edge of either the tunnel barrier layer or the fixed ferromagnetic layer, whichever back edge is closer to the sensing surface. This assures that the magnetic flux is non-zero in the tunnel junction region. The magnetization direction of the fixed ferromagnetic layer is fixed in a direction generally perpendicular to the sensing surface and thus to the magnetic recording medium, preferably by interfacial exchange coupling with an antiferromagnetic layer. The magnetization direction of the free ferromagnetic layer is aligned in a direction generally parallel to the surface of the medium in the absence of an applied magnetic field and is free to rotate in the presence of applied magnetic fields from the medium. A layer of high coercivity hard magnetic material adjacent the sides of the free ferromagnetic layer longitudinally biases the magnetization of the free ferromagnetic layer in the preferred direction.
摘要:
A magnetic tunnel junction (MTJ) magnetoresistive (MR) read head has one fixed ferromagnetic layer and one sensing ferromagnetic layer on opposite sides of the tunnel barrier layer, and with a biasing ferromagnetic layer in the MTJ stack of layers that is magnetostatically coupled with the sensing ferromagnetic layer to provide either longitudinal bias or transverse bias or a combination of longitudinal and transverse bias fields to the sensing ferromagnetic layer. The magnetic tunnel junction in the MTJ MR head is formed on an electrical lead on a substrate and is made up of a stack of layers. The layers in the stack are an antiferromagnetic layer, a fixed ferromagnetic layer exchange biased with the antiferromagnetic layer so that its magnetic moment cannot rotate in the presence of an applied magnetic field, an insulating tunnel barrier layer in contact with the fixed ferromagnetic layer, a sensing ferromagnetic layer in contact with the tunnel barrier layer and whose magnetic moment is free to rotate in the presence of an applied magnetic field, a biasing ferromagnetic layer that has its magnetic moment aligned generally within the plane of the device and a nonmagnetic electrically conductive spacer layer separating the biasing ferromagnetic layer from the other layers in the stack. The self field or demagnetizing field from the biasing ferromagnetic layer magnetostatically couples with the edges of the sensing ferromagnetic layer to stabilize its magnetic moment, and, to linearize the output of the device. The electrically conductive spacer layer prevents direct ferromagnetic coupling between the biasing ferromagnetic layer and the other layers in the stack and allows sense current to flow perpendicularly through the layers in the MTJ stack.
摘要:
A magnetic tunnel junction (MTJ) magnetoresistive read head for a magnetic recording system has the MTJ device located between two spaced-apart magnetic shields. The magnetic shields, which allow the head to detect individual magnetic transitions from the magnetic recording medium without interference from neighboring transitions, also function as electrical leads for connection of the head to sense circuitry. Electrically conductive spacer layers are located at the top and bottom of the MTJ device and connect the MTJ device to the shields. The thickness of the spacer layers is selected to optimize the spacing between the shields, which is a parameter that controls the linear resolution of the data that can be read from the magnetic recording medium. To reduce the likelihood of electrical shorting between the shields if the shield-to-shield spacing is too small, each of the shields can have a pedestal region with the MTJ device located between the two pedestals, so that the shield-to-shield spacing outside the pedestal regions is greater than in the pedestal regions.
摘要:
A magnetic tunnel junction (MTJ) magnetoresistive read head for a magnetic recording system has the MTJ sensing or free ferromagnetic layer also functioning as a flux guide to direct magnetic flux from the magnetic recording medium to the tunnel junction. The MTJ fixed ferromagnetic layer and the MTJ tunnel barrier layer have their front edges substantially coplanar with the sensing surface of the head. Both the fixed and free ferromagnetic layers are in contact with opposite surfaces of the MTJ tunnel barrier layer but the free ferromagnetic layer extends beyond the back edge of either the tunnel barrier layer or the fixed ferromagnetic layer, whichever back edge is closer to the sensing surface. This assures that the magnetic flux is non-zero in the tunnel junction region. The magnetization direction of the fixed ferromagnetic layer is fixed in a direction generally perpendicular to the sensing surface and thus to the magnetic recording medium, preferably by interfacial exchange coupling with an antiferromagnetic layer. The magnetization direction of the free ferromagnetic layer is aligned in a direction generally parallel to the surface of the medium in the absence of an applied magnetic field and is free to rotate in the presence of applied magnetic fields from the medium. A layer of high coercivity hard magnetic material adjacent the sides of the free ferromagnetic layer longitudinally biases the magnetization of the free ferromagnetic layer in the preferred direction.
摘要:
A magnetic tunnel junction (MTJ) memory cell uses a biasing ferromagnetic layer in the MTJ stack of layers that is magnetostatically coupled with the free ferromagnetic layer in the MTJ stack to provide transverse and/or longitudinal bias fields to the free ferromagnetic layer. The MTJ is formed on an electrical lead on a substrate and is made up of a stack of layers. The layers in the MTJ stack are an antiferromagnetic layer, a fixed ferromagnetic layer exchange biased with the antiferromagnetic layer so that its magnetic moment cannot rotate in the presence of an applied magnetic field, an insulating tunnel barrier layer in contact with the fixed ferromagnetic layer, a free ferromagnetic layer in contact with the tunnel barrier layer and whose magnetic moment is free to rotate in the presence of an applied magnetic field, and whose moment, in the absence of any applied field, is generally either parallel or antiparallel to that of the fixed ferromagnetic layer, a biasing ferromagnetic layer that has its magnetic moment aligned generally in the plane of the MTJ, and a nonferromagnetic electrically conductive spacer layer separating the biasing ferromagnetic layer from the other layers in the stack. The self field or demagnetizing field from the biasing layer magnetostatically couples with the edges of the free layer so as to provide a transverse bias field, which results in a coherent rotation of the moment of the free layer, and/or a longitudinal bias field, which assures that the two states of the memory cell are equally stable with respect to magnetic field excursions.
摘要:
A magnetic tunnel junction device for use as a magnetic memory cell or a magnetic field sensor has one fixed ferromagnetic layer and one sensing ferromagnetic layer formed on opposite sides of the insulating tunnel barrier layer, and a hard biasing ferromagnetic layer that is electrically insulated from but yet magnetostatically coupled with the sensing ferromagnetic layer. The magnetic tunnel junction in the device is formed on an electrical lead on a substrate and is made up of a stack of layers. The layers in the stack are an antiferromagnetic layer, a fixed ferromagnetic layer exchange biased with the antfferromagnetic layer so that its magnetic moment cannot rotate in the presence of an applied magnetic field, an insulating tunnel barrier layer in contact with the fixed ferromagnetic layer, and a sensing ferromagnetic layer in contact with the tunnel barrier layer and whose magnetic moment is free to rotate in the presence of an applied magnetic field. The stack is generally rectangularly shaped with parallel side edges. A layer of hard biasing ferromagnetic material is located near to but spaced from the side edges of the sensing ferromagnetic layer to longitudinally bias the magnetic moment of the sensing ferromagnetic layer in a preferred direction. A layer of electrically insulating material isolates the hard biasing material from the electrical lead and the sensing ferromagnetic layer so that sense current is not shunted to the hard biasing material but is allowed to flow perpendicularly through the layers in the stack.
摘要:
A device for use in the semiconductor industry includes a robotic arm whose end effector includes electromagnetic means to hold a substrate carrier. A pushing member can move independently of a flat, spatula-like portion of the device and is configured to exert force against the substrate carrier while the spatula-like portion is retracted from the substrate carrier, after the substrate carrier has been brought to its intended position. In this manner, the position of the substrate carrier is maintained at its intended position as the spatula-like portion is retracted.
摘要:
Magnetic wires that include cobalt, nickel, and platinum layers show improved domain wall motion properties, when the domain walls are driven by pulses of electrical current. These wires exhibit perpendicular magnetic anisotropy, thereby supporting the propagation of narrow domain walls. The direction of motion of the domain walls can be influenced by the order in which the platinum and cobalt layers are arranged.
摘要:
MgO tunnel barriers are formed by depositing a thin layer of Mg on a suitable underlayer, and then directing oxygen and additional Mg towards the Mg layer. The oxygen reacts with the additional Mg and the Mg in the Mg layer to form a MgO tunnel barrier that enjoys excellent tunneling characteristics. The MgO tunnel barriers so formed may be used in magnetic tunnel junctions having tunneling magnetoresistance (TMR) values of greater than 100%. The highest TMR values are observed for junctions that have been annealed and that have a (100) crystallographic orientation.