摘要:
A method and system for analyzing the dynamic behavior of an electrical circuit to determine whether a voltage level provided by a power supply network drops below a predetermined voltage level during operation of the electrical circuit is described. In a first step, a design data set representing pertinent technical specifications of an electrical or an integrated circuit are read in order to extract location information and value of switching and non-switching capacitance. Next, the circuit and technology propagation speeds are inputted therein. The length for specifying the size of a portion of a circuit area is determined wherein the electrical circuit is formed. Next, the circuit area is divided into a plurality of partitions of a specified size, and the switching capacitance and the non-switching capacitance are separately summarized for each partition. The voltage level drop is then calculated for each partition. Finally, the calculated voltage level drop is displayed in relation to the respective partition. The present method and system can be advantageously used for an on-chip power supply network evaluation as well as for an early chip development process.
摘要:
The invention relates to a tunable on-chip capacity circuit for a semiconductor chip (10) mounted on a substrate (30) and including a plurality of power supply decoupling capacitors (20-23) which can be selectively activated or deactivated by being switched on or off the power supply system. An on-chip detecting circuit (32) determines a circuit specific load/unload frequency of the on-chip power supply network, and on-chip control means (28, 33) responsive to signals of the detecting circuit increases or decreases the total of the on-chip capacity (CSD) by selectively activating or deactivating power supply decoupling capacitors (20-23). Off-chip path impedances (LMC, RMC), an off-chip capacity (CM) and the total on-chip capacity (CC), including the plurality of power supply decoupling capacitors (20-23) and parasitic on-chip capacities (CP), form a resonance loop (40) which is tunable by changing the total capacity (CSD) of the on-chip power supply decoupling capacitors. By tuning the total capacity (CSD) of the decoupling capacitors a resonance condition of the resonance loop (40) is met under which a minimum of switching power noise and a minimum switching power consumption is achieved.
摘要:
The invention relates to a testable on-chip capacitor cell 10 including a decoupling capacitor (Ci) which can be disconnected from the power distribution network and discharged through a cell internal discharge circuit. An externally controllable switch (Si) connects in a first switching position the decoupling capacitor to the power supply system and disconnects in a second switching position the decoupling capacitor from the power supply system and connects it to a resistor (Ri) which is part of the discharge circuit. An off-chip control unit (16) is provided for toggling the switch with a frequency fT between its first and second position to perform a capacitor test operation. By a current measurement device the averaged power supply current demand of the decoupling capacitor is measured when switch (Si) is toggled. The actual capacity of the decoupling capacitor is determined as a function of the power supply voltage, of the switch toggling frequency (fT) and of the averaged power supply current measured. The invention also relates to a semiconductor chip containing a plurality of capacitors cells of the type described, and to a method for testing the power supply decoupling capacity of such chips.
摘要:
A carrier for an electronic device such as an integrated circuit chip is designed by assigning two different voltage domains to two separate areas of the contact surface of the carrier, while providing a common electrical ground for both voltage domains. The integrated circuit chip may be a microprocessor having a nominal operating voltage, and the different voltages of the two voltage domains are both within the tolerance range of the nominal operating voltage but one of the voltage domains is aligned with a high power density area of the microprocessor (e.g., the microprocessor core) and provides a slightly greater voltage. The higher power voltage domain preferably has a ratio of voltage pins to ground pins that is greater than one.
摘要:
A carrier for an electronic device such as an integrated circuit chip is designed by assigning two different voltage domains to two separate areas of the contact surface of the carrier, while providing a common electrical ground for both voltage domains. The integrated circuit chip may be a microprocessor having a nominal operating voltage, and the different voltages of the two voltage domains are both within the tolerance range of the nominal operating voltage but one of the voltage domains is aligned with a high power density area of the microprocessor (e.g., the microprocessor core) and provides a slightly greater voltage. The higher power voltage domain preferably has a ratio of voltage pins to ground pins that is greater than one.
摘要:
A system and method for automatic insertion of on-chip decoupling capacitors are provided. With the system and method, an integrated circuit design is partitioned into cells and the noise distribution per cell of an integrated circuit is determined. This noise distribution may be generated using any of a number of different known mechanisms and generally results in a noise-map being generated for the integrated circuit. Thereafter, a mapping function is applied to the noise map for each cell to determine a required capacitance for the cells of the integrated circuit. From this required capacitance per cell, the necessary decoupling capacitors may be identified as well as the location for insertion of these decoupling capacitors. In a similar manner, decoupling capacitors may be removed from cells of the integrated circuit based upon the determined required capacitance per cell.
摘要:
A system and method for automatic insertion of on-chip decoupling capacitors are provided. With the system and method, an integrated circuit design is partitioned into cells and the noise distribution per cell of an integrated circuit is determined. This noise distribution may be generated using any of a number of different known mechanisms and generally results in a noise-map being generated for the integrated circuit. Thereafter, a mapping function is applied to the noise map for each cell to determine a required capacitance for the cells of the integrated circuit. From this required capacitance per cell, the necessary decoupling capacitors may be identified as well as the location for insertion of these decoupling capacitors. In a similar manner, decoupling capacitors may be removed from cells of the integrated circuit based upon the determined required capacitance per cell.
摘要:
A method, digital circuit system and program product for reducing delta-I noise in a plurality of activity units connected to a common DC-supply voltage. In order to smooth the fluctuations (delta-I) of a total current demand I, and a respective resulting fluctuation of the supply voltage, a signalling scheme between said activity units and a supervisor unit which holds a system-specific “database” containing at least the current demand of each activity unit device when operating regularly. Dependent of the quantity of calculated, imminent delta-I a subset of said activity units with a respective current I demand is selected and controlled, for either temporarily delaying their beginning of activity in case of an imminent supply voltage drop, or temporarily continuing their activity with a predetermined, activity-specific NO-OP phase in case of an imminent supply voltage rise.
摘要:
A multi-layer module for packaging an electronic component comprises an uppermost electrically conductive layer for mounting the component, a plurality of electrically insulative layers, and a plurality of electrically conductive layers disposed between the insulative layers. The electrically conductive layers form staggered placements of at least three voltage and/or ground distribution layers close to the module surface without signal wiring layers in between, and signal distribution layers comprising signal conductors. Vias form conductive paths through the insulative layers and conductive layers; the corresponding signal, voltage and ground distribution layers are electrically connected with each other and with the uppermost layer.
摘要:
The present invention relates to computer hardware design, and in particular to a printed circuit board (card) comprising wiring dedicated to supply electric board components such as integrated circuits with at least three different reference planes. In particular at locations, where the pins of a card-to-card connector enter the layer structure of the card discontinuities brake the high frequency signal return path of a given signal wiring.In order to close the signal return path around a signal path from card to card including the connector, and thus to limit the signal coupling while concurrently keeping the card design as simple as possible, it is proposed to provide a) an additional capacitance for a given signal wiring in a discontinuity section, b) wherein the additional capacitance is formed by a voltage island placed within a signal layer located next to the given signal wiring.