摘要:
An apparatus and method are provided for forming one dimensional nanostructures. The method comprises ink jet printing (52) a plurality of catalyst particles (36) on a substrate (32). A gas (20) is applied (54) to the catalyst particles (36) while simultaneously applying (56) microwave radiation (38).
摘要:
A method and system for managing a communication session among a plurality of communication members (116, 118, 120 and 122) is provided. The communication session is managed by an electronic device (102). The method includes identifying (304) an interrupted communication member (120) from the plurality of communication members. The interrupted communication member is talked-over by an interrupting communication member (122) during the communication session. Further, the method includes determining (306) an opportunity to notify in the communication session when the talk-over concludes. Furthermore, the method includes providing (308) a notification of the talk-over to the plurality of communication members during the opportunity to notify.
摘要:
A method of performing a binding assay which comprises the steps of separating a plurality of sample fragments into a plurality of subsamples and applying each of the plurality of subsamples to a respective one of a plurality of binding assays. A system which performs the aforementioned steps is also disclosed.
摘要:
A micro-contact printing apparatus includes a pressure chamber with a micro-contact printing stamp, a vacuum chuck, elastomeric membrane and mechanical stops attached to the vacuum chuck and positioned within the chamber. An extractor pin is attached to the chamber and accessible externally. The micro-contact printing stamp includes a flexible layer made from an elastomer with a stamping surface and attached to a support structure. A method for micro-contact printing a substrate surface includes advancing the substrate surface toward the stamping surface and contacting mechanical stops with support structure before the substrate surface physically contacts the stamping surface. Springs of members adjust the position of the substrate surface to be parallel with the stamping surface. The membrane is inflated to physically contact the substrate surface with the stamping surface, in such a manner that complete adhesion of the stamping surface to the substrate surface is achieved. The extractor pin is used to disengage the substrate surface from the stamping surface at the chamber pressure used in micro-contact printing, so that distortion of the printing pattern is minimized.
摘要:
A target molecule at a binding site is detected using an optical waveguide having a surface proximate to the binding site, and a waveguide detector coupled to the optical waveguide. An incident light beam is applied to the binding site along an axis transverse to the surface of the optical waveguide. The incident light beam impinges an optical indicator associated with the target molecule to form secondary light which is coupled into the optical waveguide. The secondary light is detected by the waveguide detector to thereby detect the target molecule.
摘要:
A system [100] is provided that includes a first set of sensors [140] to sense a set of conditions of at least one participant in a conversation and generate raw data corresponding to the sensed set of conditions. A first aggregation engine [160] aggregates the raw data and outputs a file corresponding to the raw data. A heuristic engine [175] receives the file and compares the raw data with predetermined state data and outputs a state based on a comparison of the raw data and the predetermined state data. A feedback device [180] determines a corrective action to enhance an outcome of the conversation based on the state.
摘要:
At least some speakers engaged in an oral discourse are identified (101) and their oral contributions during that oral discourse tracked (102). At least one visual indicator provided (103) during the oral discourse serves to provide data regarding these tracked contributions (such as, but not limited to, an aggregate length of time that one or more of the participants has spoken). These teachings also provide, however, for automatically taking (104) at least one other action, during the oral discourse, as a function, at least in part, of this tracked oral contribution information.
摘要:
A molecular sensing apparatus comprises a first electrode (10), a second electrode (12), a first molecule (20), a second molecule (22), and a third molecule (34). The first molecule (20) has a first chain of nucleic bases (30) and a first group (24). The first group (24) is bound to the first electrode (10). The second molecule (22) has a second chain of nucleic bases (32) and a second group (26). The second group (26) is bound to the second electrode (12). The third molecule (34) is bound to the first molecule (20) and the second molecule (22). A method which uses the molecular sensing apparatus is disclosed.
摘要:
A target molecule at a binding site is detected using an optical waveguide having a surface proximate to the binding site, and a waveguide detector coupled to the optical waveguide. An incident light beam is applied to the binding site along an axis transverse to the surface of the optical waveguide. The incident light beam impinges an optical indicator associated with the target molecule to form secondary light which is coupled into the optical waveguide. The secondary light is detected by the waveguide detector to thereby detect the target molecule.
摘要:
An apparatus (100) including a support structure (104), a flexible stamp (106) having a stamping surface (110) including a predetermined pattern disposed opposite the support structure (104), a pressure controlled chamber (112) disposed above the support structure (104), and a mechanical attachment (114) affixed to the flexible stamp (106). A method is provided for stamping the surface (101) of an article (102) including the steps of i) placing the article (102) on the support structure (104) within the pressure-controlled chamber (112), ii) wetting the stamping surface (110) with a solution containing a self-assembled monolayer-forming molecular species, iii) aligning alignment patterns (118) on the flexible stamp (106) with alignment patterns (124) on the surface (101) of the article (102), iv) controllably contacting the wetted stamping surface (110) with the surface (101) of the article (102) by changing the pressure differential across the flexible stamp (106) so that contact commences at the center of the flexible stamp (106) and proceeds outwardly in a controlled manner, and v) removing the stamping surface (110) from the surface (101) of the article so that a self-assembled monolayer (134) having the predetermined pattern is formed on the surface (101) of the article (102).