摘要:
A plasma enhanced CVD apparatus includes a processing chamber, a pumping system for evacuating the processing chamber, a gas inlet system for introducing a source gas, and a plasma generating electrode provided in the processing chamber for depositing a film on a substrate in the processing chamber by plasma generated by electrical power supplied to the plasma generating electrode; the plasma generating electrode has two terminals, one of the terminals is connected to a radio frequency power source and other of the terminals is grounded through an electrode potential controlling system; and the processing chamber is grounded through an inner wall potential controlling system. The present invention is further directed to a plasma enhanced CVD process, a dry etching apparatus, and a dry etch process.
摘要:
A method of depositing a titanium-containing conductive thin film, which is capable of depositing a high-quality thin film having a low chlorine content by grounding, through a capacitor, a terminal of a plasma generating electrode disposed in a processing chamber. In the method, one of the introduction terminals of the plasma generating electrode is connected to a radio-frequency power source, the other terminal being grounded through the capacitor. Titanium tetrachloride, hydrogen gas, and nitrogen gas are introduced into the processing chamber at flowrates of 20 ml/min, 30 ml/min and 10 ml/min, respectively. The pressure in the processing chamber is set to about 1 Pa, and the temperature of the substrate is set to 450.degree. to 600.degree. C. A low-pressure, high-density plasma is generated with an output of the radio-frequency power source of 2.5 kW to deposit a titanium nitride film at a rate of about 30 nm/min. The resultant titanium nitride film has a chlorine content of 1% or less, metallic lustre and low resistance.
摘要:
By forming at least one annular groove in each of electrical insulation members provided between a plasma generating electrode and a processing chamber, the insulation performance of the electrical insulation members are prevented from degradation during deposition of conductive films onto a substrate. The plasma generating electrode is substantially a coil of one turn and provided with a pair of introduction portions passing through a wall of the processing chamber. An insulation ring made of quartz glass is installed between each of the introduction portion and the processing chamber. The insulation ring has a round through hole in the center of a disc and three concentric protrusions, each of which is in the shape of an annulus ring, are formed at one side of the disc (the side exposed in the processing chamber). Two annular grooves are made between the protrusions. Each of the protrusions are 50 mm high, 1 mm thick, and 1 mm wide.
摘要:
A method for fabricating a titanium nitride thin film in a reaction vessel on a surface of a substrate heated to a prescribed temperature, includes the steps of mixing tetrakis(dialkylamino)titanium (TDAAT) and a first carrier gas to create a first mixed gas; feeding the first mixed gas into the reaction vessel through a first set of nozzles; mixing an added gas reactive with the tetrakis(dialkylamino)titanium with a second carrier gas to create a second mixed gas; feeding the second mixed gas into the reaction vessel through a second set of nozzles; while controlling the flow rates of the TDAAT, added gas, firt and second carrier gases; and depositing a titanium nitride thin film by the first mixed gas and the second mixed gas while confining the pressure inside the reaction vessel to a range of 0.1-15 Pa.
摘要:
A method of manufacturing a titanium nitride thin film at the surface of a substrate the chemical vapor deposition method (CVD method) includes supplying trakisdialkylamino titanium (TDAAT and ammonia into a reaction vessel, and heating it a prescribed temperature under a low pressure of less than 100 Pa total pressure, wherein the partial pressure PTDAAT of the source-material gas is set in a range of 0
摘要:
A CVD apparatus for fabricating a titanium nitride thin film is provided. The apparatus comprises an evacuatable reaction vessel having an interior, a pumping apparatus capable of exhausting the reaction vessel and maintaining the interior of the reaction vessel at a prescribed pressure, a gas feeder for introducing a mixed gas into the reaction vessel, a substrate holder in the reaction vessel for holding a substrate to be coated with a titanium nitride thin film, and a heater for heating the substrate. The gas feeder is equipped with the following components: (a) a vaporizer for vaporizing tetrakis(dialkylamino)titanium (TDAAT) from a liquid source material, (b) a first flow controller capable of setting a flow rate of the vaporized TDAAT to any level within a range of 0.004-02 g/min, (c) a second flow controller capable of setting a flow rate of a first carrier gas mixed with the TDAAT to any level within a range of 100-1000 sccm, (d) a third flow controller capable of setting a flow rate of an added gas reactable with the TDAAT to any level within a range of 10-100 sccm, (e) a fourth flow controller capable of setting a flow rate of a second carrier gas being mixed with the added gas to any level within a range of 10-500 sccm, (f) a first supply conduit for mixing the TDAAT and the first carrier gas to create a first mixed gas and guiding the resulting first mixed gas into the reaction vessel, (g) a second supply conduit for mixing the added gas and the second carrier gas to create a second mixed gas and guiding the resulting second mixed gas into the reaction vessel, and (h) a shower head which is provided with a plurality of first nozzles connected to the first supply conduit, and a plurality of second nozzles connected to the second supply conduit, and which is configured such that the first and second mixed gases are fed into the reaction vessel through the nozzles.
摘要:
The hologram recording sheet according to the invention is made up of a base film and hologram sensitive materials sensitive to different wavelength regions formed therein in a desired pattern, or a film and at least two hologram recording sensitive materials sensitive to different wavelength regions laminated on the film with a transparent plastic spacer layer located therebetween, thereby enabling the required diffraction light wavelengths to be recorded on the required sites without producing unnecessary interference fringes. At least two hologram recording sensitive materials sensitive to different wavelength regions are formed on different sites on a film in dotted or striped configuration, the size of which is up to 200 mm or at least twice as large as the thickness of the sensitive material layers, thereby enabling regions diffracting light of different wavelengths to be formed in the form of independent sets of interference fringes.
摘要:
The hologram recording sheet according to the invention is made up of a base film and hologram sensitive materials sensitive to different wavelength regions formed therein in a desired pattern, or a film and at least two hologram recording sensitive materials sensitive to different wavelength regions laminated on the film with a transparent plastic spacer layer located therebetween, thereby enabling the required diffraction light wavelengths to be recorded on the required sites without producing unnecessary interference fringes. At least two hologram recording sensitive materials sensitive to different wavelength regions are formed on different sites on a film in dotted or striped configuration, the size of which is up to 200 mm or at least twice as large as the thickness of the sensitive material layers, thereby enabling regions diffracting light of different wavelengths to be formed in the form of independent sets of interference fringes.
摘要:
The present invention provides a method of depositing a titanium nitride thin film with good coverage even in a hole with a high aspect ratio by using tetrakisdialkylaminotitanium. In this method, a raw material gas of tetrakisdialkylaminotitanium is introduced into a reactor through a raw material gas introduction system. When the raw material gas is supplied to a substrate which is previously heated by a holder temperature control mechanism, predetermined thermally chemical reaction takes place to deposit a thin film consisting of titanium nitride as a main component. The pressure in the reactor is controlled by an exhaust system so as to be maintained at a predetermined value in the range of about 0.1 to 15 Pa.
摘要:
A duplicating photosensitive material film is brought into close contact with an ND glass reduced in thickness so as to become flexible or a flexible sheet or an ND glass coated with a cushioning layer through an optical contacting liquid containing a surface active agent. In addition, a spacer is interposed between a hologram original plate and a duplicating photosensitive material, and a space defined by the spacer is filled with an optical contacting liquid, thereby regulating the thickness of the optical contacting liquid layer with the spacer. Therefore, when pressure is applied, the optical contacting liquid is uniformly pressed, so that it can be made uniform and thin in thickness. Accordingly, it is possible to prevent a failure of duplication of a hologram image due to undesirable flow of the optical contacting liquid. In addition, the wettability of the optical contacting liquid improves, so that it is possible to prevent trapping of air and foaming and to make the optical contacting liquid uniform and thin in thickness. Thus, it becomes possible to duplicate a hologram image excellently. In addition, a cushioning layer is provided on the inner side of an AR coated ND glass or on the upper side of a photosensitive material film, and another cushioning layer is provided on the side of an original plate protecting glass which is closer to the optical contacting liquid or on the lower side of the photosensitive material film. With this arrangement, even if dust enters, it can be effectively held inside the cushioning layers. Thus, it is possible to prevent undesirable flow of the optical contacting liquid and lifting of the film due to dust and hence possible to perform duplication effectively without any hindrance. Also disclosed is a hologram producing apparatus which includes mechanisms for feeding and taking up a duplicating photosensitive material film, and a contacting liquid dropping mechanism. The apparatus further includes a mechanism for nipping an excess of contacting liquid dropped, a mechanism for drying the contacting liquid attached to the exposed duplicating photosensitive material film, a mechanism for positioning the film, etc.