Abstract:
A method of manufacturing a semiconductor device includes patterning a substrate to form an active fin, forming a sacrificial gate pattern crossing over the active fin on the substrate, forming an interlayer insulating layer on the sacrificial gate pattern, removing the sacrificial gate pattern to form a gap region exposing the active fin in the interlayer insulating layer, and oxidizing a portion of the active fin exposed by the gap region to form an insulation pattern between the active fin and the substrate.
Abstract:
A method of manufacturing a semiconductor device includes patterning a substrate to form an active fin, forming a sacrificial gate pattern crossing over the active fin on the substrate, forming an interlayer insulating layer on the sacrificial gate pattern, removing the sacrificial gate pattern to form a gap region exposing the active fin in the interlayer insulating layer, and oxidizing a portion of the active fin exposed by the gap region to form an insulation pattern between the active fin and the substrate.
Abstract:
A method of manufacturing a semiconductor device includes patterning a substrate to form an active fin, forming a sacrificial gate pattern crossing over the active fin on the substrate, forming an interlayer insulating layer on the sacrificial gate pattern, removing the sacrificial gate pattern to form a gap region exposing the active fin in the interlayer insulating layer, and oxidizing a portion of the active fin exposed by the gap region to form an insulation pattern between the active fin and the substrate.
Abstract:
Provided are semiconductor devices and methods of manufacturing the same. The methods include providing a substrate including a first region and a second region, forming first mask patterns in the first region, and forming second mask patterns having an etch selectivity with respect to the first mask patterns in the second region. The first mask patterns and the second mask patterns are formed at the same time.
Abstract:
A semiconductor device can include a substrate with a first source/drain and a second source/drain in the substrate. A first ohmic contact pattern can be in an uppermost surface of the first source/drain, where the first ohmic contact pattern includes a first semiconductor alloyed with a first metal. A second ohmic contact pattern can be in an uppermost surface of the second source/drain, where the second ohmic contact pattern includes a second semiconductor that is different than the first semiconductor and is alloyed with a second metal that is different than the first metal.
Abstract:
A semiconductor device can include a substrate with a first source/drain and a second source/drain in the substrate. A first ohmic contact pattern can be in an uppermost surface of the first source/drain, where the first ohmic contact pattern includes a first semiconductor alloyed with a first metal. A second ohmic contact pattern can be in an uppermost surface of the second source/drain, where the second ohmic contact pattern includes a second semiconductor that is different than the first semiconductor and is alloyed with a second metal that is different than the first metal.
Abstract:
Field effect transistors are provided. An active region protrudes from a substrate and a gate electrode is provided on the active region. Source/drain regions are provided at both sides of the active region under the gate electrode, respectively. A width of a lower portion of the gate electrode is greater than a width of an upper portion of the gate electrode.
Abstract:
Provided is a semiconductor device with a field effect transistor. The semiconductor device includes a substrate, an active pattern on the substrate, a gate electrode crossing the active pattern and a capping structure on the gate electrode. The capping structure includes first and second capping patterns that are sequentially stacked on the gate electrode. The second capping pattern completely covers a top surface of the first capping pattern, and a dielectric constant of the second capping pattern is greater than that of the first capping pattern.
Abstract:
Provided are semiconductor devices and methods of manufacturing the same. The methods include providing a substrate including a first region and a second region, forming first mask patterns in the first region, and forming second mask patterns having an etch selectivity with respect to the first mask patterns in the second region. The first mask patterns and the second mask patterns are formed at the same time.
Abstract:
Field effect transistors are provided. An active region protrudes from a substrate and a gate electrode is provided on the active region. Source/drain regions are provided at both sides of the active region under the gate electrode, respectively. A width of a lower portion of the gate electrode is greater than a width of an upper portion of the gate electrode.