Abstract:
A semiconductor device having a reduced amount of oxygen vacancy in a channel formation region of an oxide semiconductor is provided. Further, a semiconductor device which includes an oxide semiconductor and has improved electric characteristics is provided. Furthermore, a methods for manufacturing the semiconductor device is provided. An oxide semiconductor film is formed; a conductive film is formed over the oxide semiconductor film at the same time as forming a low-resistance region between the oxide semiconductor film and the conductive film; the conductive film is processed to form a source electrode and a drain electrode; and oxygen is added to the low-resistance region between the source electrode and the drain electrode, so that a channel formation region having a higher resistance than the low-resistance region is formed and a first low-resistance region and a second low-resistance region between which the channel formation region is positioned are formed.
Abstract:
A change in electrical characteristics is suppressed and reliability in a semiconductor device using a transistor including an oxide semiconductor is improved. Oxygen is introduced into a surface of an insulating film, and then, an oxide semiconductor, a layer which is capable of blocking oxygen, a gate insulating film, and other films which composes a transistor are formed. For at least one of the first gate insulating film and the insulating film, three signals in Electron Spin Resonance Measurement are each observed in a certain range of g-factor. Reducing the sum of the spin densities of the signals will improve reliability of the semiconductor device.
Abstract:
To provide a transistor with stable electrical characteristics, a transistor with a low off-state current, a transistor with a high on-state current, a semiconductor device including the transistor, or a durable semiconductor device. The semiconductor device includes a first transistor using silicon, an aluminum oxide film over the first transistor, and a second transistor using an oxide semiconductor over the aluminum oxide film. The oxide semiconductor has a lower hydrogen concentration than silicon.
Abstract:
A semiconductor device includes a semiconductor, a first conductor, a second conductor, a third conductor, a fourth conductor, a first insulator, a second insulator, a third insulator, and a fourth insulator. The first conductor and the semiconductor partly overlap with each other with the first insulator positioned therebetween. The second conductor and the third conductor have regions in contact with the semiconductor. The semiconductor has a region in contact with the second insulator. The fourth insulator has a first region and a second region. The first region is thicker than the second region. The first region has a region in contact with the second insulator. The second region has a region in contact with the third insulator. The fourth conductor and the second insulator partly overlap with each other with the fourth insulator positioned therebetween.
Abstract:
A transistor with stable electrical characteristics. A semiconductor device includes a first insulator over a substrate, a second insulator over the first insulator, an oxide semiconductor in contact with at least part of a top surface of the second insulator, a third insulator in contact with at least part of a top surface of the oxide semiconductor, a first conductor and a second conductor electrically connected to the oxide semiconductor, a fourth insulator over the third insulator, a third conductor which is over the fourth insulator and at least part of which is between the first conductor and the second conductor, and a fifth insulator over the third conductor. The first insulator contains a halogen element.
Abstract:
Provided is a transistor with stable electrical characteristics. Provided is a semiconductor device including an oxide semiconductor over a substrate, a first conductor in contact with a top surface of the oxide semiconductor, a second conductor in contact with the top surface of the oxide semiconductor, a first insulator over the first and second conductors and in contact with the top surface of the oxide semiconductor, a second insulator over the first insulator, a third conductor over the second insulator, and a third insulator over the third conductor. The third conductor overlaps with the first conductor with the first and second insulators positioned therebetween, and overlaps with the second conductor with the first and second insulators positioned therebetween. The first insulator contains oxygen. The second insulator transmits less oxygen than the first insulator. The third insulator transmits less oxygen than the first insulator.
Abstract:
A transistor with stable electrical characteristics or a transistor with normally-off electrical characteristics. The transistor is a semiconductor device including a conductor, a semiconductor, a first insulator, and a second insulator. The semiconductor is over the first insulator. The conductor is over the semiconductor. The second insulator is between the conductor and the semiconductor. The first insulator includes fluorine and hydrogen. The fluorine concentration of the first insulator is higher than the hydrogen concentration of the first insulator.
Abstract:
To provide a semiconductor device with improved reliability. To provide a semiconductor device with stable characteristics. To provide a transistor having a low off-state current. To provide a transistor having a high on-state current. To provide a novel semiconductor device, a novel electronic device, or the like. A method for manufacturing the semiconductor device includes the steps of forming a first semiconductor over a substrate; forming a second semiconductor over and in contact with the first semiconductor; forming a first layer over the second semiconductor; performing oxygen plasma treatment and then removing the first layer to expose at least part of a surface of the second semiconductor; forming a third semiconductor over and in contact with the second semiconductor; forming a first insulator over and in contact with the third semiconductor; and forming a first conductor over the first insulator.
Abstract:
A method for manufacturing a semiconductor device includes the steps of forming a first insulating film over a first gate electrode over a substrate while heated at a temperature higher than or equal to 450° C. and lower than the strain point of the substrate, forming a first oxide semiconductor film over the first insulating film, adding oxygen to the first oxide semiconductor film and then forming a second oxide semiconductor film over the first oxide semiconductor film, and performing heat treatment so that part of oxygen contained in the first oxide semiconductor film is transferred to the second oxide semiconductor film.
Abstract:
A semiconductor device includes an oxide semiconductor film, a source electrode, a drain electrode, a gate insulating film, a gate electrode, and an insulating film. The source electrode includes a region in contact with the oxide semiconductor film. The drain electrode includes a region in contact with the oxide semiconductor film. The gate insulating film is provided between the oxide semiconductor film and the gate electrode. The insulating film is provided over the gate electrode and over the gate insulating film. The insulating film includes a first portion and a second portion. The first portion includes a step portion. The second portion includes a non-step portion. The first portion includes a portion with a first thickness. The second portion includes a portion with a second thickness. The second thickness is larger than or equal to 1.0 time and smaller than or equal to 2.0 times the first thickness.