Abstract:
A clock generator includes an interpolative divider including a phase interpolator and a multi-modulus divider. The interpolative divider is configured to generate an output clock signal based on a clock signal, a control code, and a phase interpolator calibration signal. The clock generator includes a calibration circuit configured to generate the phase interpolator calibration signal based on the clock signal, the output clock signal and a phase interpolator code. The calibration circuit includes a phase-locked loop configured to generate a digital phase error signal based on a reference timestamp signal and a timestamp signal based on the clock signal and the output clock signal. The calibration circuit includes an adaptive loop configured to generate the phase interpolator calibration signal based on the digital phase error signal.
Abstract:
A spur target frequency is periodically determined to cancel a spur using a spur cancellation circuit in a first phase-locked loop (PLL) in a system with at least a second PLL that is in lock with the first PLL. The spur target frequency is periodically determined utilizing divide ratios of the first PLL and the second PLL to determine the updated spur target frequency. As one or more of the divide ratios change, the spur frequency changes and the spur target frequency is updated to reflect the change.
Abstract:
A feedback loop includes an oscillator-based analog-to-digital converter configured to convert an analog signal to a first digital value and a second digital value. The oscillator-based analog-to-digital converter includes a first oscillator having a first oscillation frequency configured to generate a first digital value based on a first signal component of the analog signal. The oscillator-based analog-to-digital converter includes a second oscillator having a second oscillation frequency configured to generate a second digital value based on a second signal component of the analog signal. The first and second signal components are complementary signal components. The feedback loop includes a combiner configured to generate a digital value based on the first digital value, the second digital value, and an offset code. The offset code has a value that increases a difference between the first oscillation frequency and the second oscillation frequency.
Abstract:
A chip having output synchronization includes a phase detector for receiving an external reference clock signal, an input delay path coupled to an output of the phase detector and having an output for providing an internal reference clock signal, an output delay path coupled to the output of the input delay path and having an output coupled to a feedback input of the phase detector, a phase adjustment circuit having a first input coupled to the output of the input delay path, a second input for receiving a local clock signal, and an output coupled to the control input of the input delay path, and a synchronization capture circuit having a first input coupled to the output of said input delay path, a second input for receiving the local clock signal, a third input for receiving a synchronization signal, and an output for providing a synchronization trigger signal.
Abstract:
A technique includes selectively enabling a first sequence of unit elements of a plurality of unit elements of a digital-to-analog converter to convert a digital code to a plurality of analog signals in response to a plurality of control signals. Individual control signals of the plurality of control signals and individual analog signals of the plurality of analog signals correspond to respective unit elements of the plurality of unit elements. The technique includes generating the plurality of control signals based on the digital code, a random digital code having a number of bits based on a feedback signal, and an indicator of a second sequence of unit elements of the plurality of unit elements enabled in response to a prior digital code.