Abstract:
A system may include an external apparatus and a semiconductor apparatus. The semiconductor apparatus may be configured to communicate with the external apparatus by receiving a frequency-varying first clock signal provided from the external apparatus.
Abstract:
A clock distribution circuit may include a data clock generation circuit configured to be input a power source voltage and configured to generate an internal clock signal according to an external clock signal; and a global distribution circuit includes a first circuit and a second circuit coupled to a global line, configured to be input a power source voltage and configured to receive the internal clock signal through the first circuit and distribute the internal clock signal to an exterior of the clock distribution circuit through the second circuit, wherein a first bias voltage provided to the first circuit and a second bias voltage provided to the second circuit are controlled independently of each other.
Abstract:
A semiconductor apparatus includes a pipe input/output signal generation block configured to generate a plurality of pipe input signals and a plurality of pipe output signals according to a pipe enable signal, and be initialized according to an error detection signal; a pipe latch group including a plurality of pipe latches, each of the plurality of pipe latches being configured to receive and store an input signal according to a corresponding pipe input signal and output a stored signal as an output signal according to a corresponding pipe output signal; and an error detection block configured to generate the error detection signal according to a pipe end signal, the pipe enable signal, the plurality of pipe input signals and the plurality of pipe output signals.
Abstract:
A clock distribution circuit may include a data clock generation circuit configured to generate an internal clock signal using an external clock signal. The clock distribution circuit may be configured to receive the internal clock signal through a first circuit and distribute the internal clock signal to an exterior of the clock distribution circuit through a second circuit coupled to a global line. A first bias voltage provided to the first circuit and the data clock generation circuit and a second bias voltage provided to the second circuit may be controlled independently of each other.
Abstract:
A semiconductor apparatus may be provided. The semiconductor apparatus may include a plurality of memory blocks. The semiconductor apparatus may include a peripheral circuit region arranged between the plurality of memory blocks. A plurality of signal input/output (I/O) pads may be arranged in the plurality of memory blocks.
Abstract:
A semiconductor system may include a first semiconductor configured to output a command signal and an address signal. The semiconductor system may include a second semiconductor device configured to include a first operation circuit including a first MOS transistor and a second operation circuit including a second MOS transistor. The first MOS transistor and the second MOS transistor may be turned on in response to a first internal command signal when a first operation is executed according to the command signal. The first MOS transistor may be turned on in response to a period signal generated from the address signal when a second operation is executed according to the command signal.
Abstract:
A refresh circuit is configured to generate a counting signal by counting a refresh command and to generate a plurality of preliminary refresh cycle change signals by decoding the counting signal. The refresh circuit is also configured to change a refresh cycle based on one of the plurality of preliminary refresh cycle change signals and to perform a refresh operation.
Abstract:
A semiconductor apparatus includes: a pad unit comprising a plurality of data input/output (I/O) pads and a plurality of error detection code pads; an error detection code (EDC) read path configured to generate a plurality of EDCs by performing an error detection operation on a plurality of data, and output the plurality of EDCs through the plurality of error detection code pads; a comparison circuit configured to generate a comparison result signal by comparing the plurality of EDCs; and a data read path configured to output the comparison result signal through any one of the plurality of data I/O pads.
Abstract:
A semiconductor memory device may include a control signal generation circuit, a period signal generation circuit and a selection circuit. The control signal generation circuit may be configured to generate a control signal in response to a mode signal, a voltage detection signal and a temperature detection signal. The period signal generation circuit may be configured to generate a period signal periodically transited in response to the control signal. The selection circuit may be configured to output, in response to the control signal, any one of the period signal and a signal from an external device that is buffered.
Abstract:
A clock generation circuit includes a counting code generation unit configured to generate counting codes corresponding to a frequency of an input clock when an enable signal is enabled; a control code generation unit configured to decode the counting codes and generate control codes; and a cycle changeable oscillation unit configured to determine a frequency of an output clock in response to the control codes.