Semiconductor device and method of forming SIP with electrical component terminals extending out from encapsulant

    公开(公告)号:US10418341B2

    公开(公告)日:2019-09-17

    申请号:US15686584

    申请日:2017-08-25

    Abstract: A semiconductor device has a carrier with an adhesive layer formed over the carrier. Alignment marks are provided for picking and placing the electrical component on the carrier or adhesive layer. An electrical component is disposed on the adhesive layer by pressing terminals of the electrical component into the adhesive layer. The electrical component can be a semiconductor die, discrete component, electronic module, and semiconductor package. A leadframe is disposed over the adhesive layer. A shielding layer is formed over the electrical component. An encapsulant is deposited over the electrical component. The carrier and adhesive layer are removed so that the terminals of the electrical component extend out from the encapsulant for electrical interconnect. A substrate includes a plurality of conductive traces. The semiconductor device is disposed on the substrate with the terminals of the electrical component in contact with the conductive traces.

    Semiconductor Device and Method of Forming SIP Module Over Film Layer

    公开(公告)号:US20180269195A1

    公开(公告)日:2018-09-20

    申请号:US15459997

    申请日:2017-03-15

    Abstract: A semiconductor device has a semiconductor die or component, including an IPD, disposed over an attach area of a penetrable film layer with a portion of the semiconductor die or component embedded in the penetrable film layer. A conductive layer is formed over a portion of the film layer within the attach area and over a portion of the film layer outside the attach area. An encapsulant is deposited over the film layer, conductive layer, and semiconductor die or component. The conductive layer extends outside the encapsulant. An insulating material can be disposed under the semiconductor die or component. A shielding layer is formed over the encapsulant. The shielding layer is electrically connected to the conductive layer. The penetrable film layer is removed. The semiconductor die or component disposed over the film layer and covered by the encapsulant and shielding layer form an SIP module without a substrate.

    Semiconductor device and method of forming protrusion e-bar for 3D SiP

    公开(公告)号:US11342294B2

    公开(公告)日:2022-05-24

    申请号:US16821093

    申请日:2020-03-17

    Abstract: A semiconductor device has a first substrate and a semiconductor die disposed over the first substrate. A second substrate has a multi-layered conductive post. The conductive post has a first conductive layer and a second conductive layer formed over the first conductive layer. The first conductive layer is wider than the second conductive layer. A portion of the conductive post can be embedded within the second substrate. The second substrate is disposed over the first substrate adjacent to the semiconductor die. An encapsulant is deposited around the second substrate and semiconductor die. An opening is formed in the second substrate aligned with the conductive post. An interconnect structure is formed in the opening to contact the conductive post. A discrete electrical component is disposed over a surface of the first substrate opposite the semiconductor die. A shielding layer is formed over the discrete electrical component.

    Method of forming SIP module over film layer

    公开(公告)号:US10804119B2

    公开(公告)日:2020-10-13

    申请号:US15459997

    申请日:2017-03-15

    Abstract: A semiconductor device has a semiconductor die or component, including an IPD, disposed over an attach area of a penetrable film layer with a portion of the semiconductor die or component embedded in the penetrable film layer. A conductive layer is formed over a portion of the film layer within the attach area and over a portion of the film layer outside the attach area. An encapsulant is deposited over the film layer, conductive layer, and semiconductor die or component. The conductive layer extends outside the encapsulant. An insulating material can be disposed under the semiconductor die or component. A shielding layer is formed over the encapsulant. The shielding layer is electrically connected to the conductive layer. The penetrable film layer is removed. The semiconductor die or component disposed over the film layer and covered by the encapsulant and shielding layer form an SIP module without a substrate.

Patent Agency Ranking