Abstract:
A circuit including a data storage element; first and second input circuitry coupled respectively to first and second inputs of the data storage element and each including a plurality of components adapted to generate, as a function of an initial signal, first and second input signals respectively provided to the first and second inputs; wherein the data storage element includes a first storage node and is configured such that a voltage state stored at the first storage node is protected from a change in only one of the first and second input signals by being determined by the conduction state of a first transistor coupled to the first storage node and controlled based on the first input signal and by the conduction state of a second transistor coupled to the first storage node and controlled based on the second input signal.
Abstract:
A chain of flip-flops is tested by passing a reference signal through the chain. The reference signal is generated from a test pattern that is cyclically fed back at the cadence of a clock signal. The reference signal propagates through the chain of flip-flops at the cadence of the clock signal to output a test signal. A comparison is carried out at the cadence of the clock signal of the test signal and the reference signal, where the reference signal is delayed by a delay time taking into account the number of flip-flops in the chain and the length of the test pattern. An output signal is produced, at the cadence of the clock signal, as a result of the comparison.
Abstract:
An integrated with a block including first and second oppositely doped semiconductor wells. There are standard cells placed next to one another, each standard cell including first transistors and a clock tree cell encircled by standard cells. The clock tree cell has a third semiconductor well with the same doping type as the doping of the first well and second transistors. The clock tree cell also has a semiconductor strip extending continuously around the third well and having the opposite doping type to the doping of the third well to electrically isolate the third well from the first well.
Abstract:
A chain of flip-flops is tested by passing a reference signal through the chain. The reference signal is generated from a test pattern that is cyclically fed back at the cadence of a clock signal. The reference signal propagates through the chain of flip-flops at the cadence of the clock signal to output a test signal. A comparison is carried out at the cadence of the clock signal of the test signal and the reference signal, where the reference signal is delayed by a delay time taking into account the number of flip-flops in the chain and the length of the test pattern. An output signal is produced, at the cadence of the clock signal, as a result of the comparison.
Abstract:
The invention relates to an integrated circuit comprising: a first semiconductor well (60); a plurality of standard cells (66), each standard cell comprising a first field-effect transistor in FDSOI technology comprising a first semiconductor ground plane located immediately on the first well; and a clock tree cell (30) contiguous with the standard cells, the clock tree cell comprising a second field-effect transistor in FDSOI technology, which transistor comprises a second semiconductor ground plane located immediately on the first well (60), so as to form a p-n junction with this first well. The integrated circuit comprises an electrical power supply network (51) able to apply separate electrical biases directly to the first and second ground planes.
Abstract:
The invention relates to an integrated circuit comprising: a first semiconductor well (60); a plurality of standard cells (66), each standard cell comprising a first field-effect transistor in FDSOI technology comprising a first semiconductor ground plane located immediately on the first well; and a clock tree cell (30) contiguous with the standard cells, the clock tree cell comprising a second field-effect transistor in FDSOI technology, which transistor comprises a second semiconductor ground plane located immediately on the first well (60), so as to form a p-n junction with this first well. The integrated circuit comprises an electrical power supply network (51) able to apply separate electrical biases directly to the first and second ground planes.
Abstract:
A radiation-hardened logic device includes a first n-channel transistor coupled by its main conducting nodes between an output node of a logic device and a supply voltage rail and a first p-channel transistor coupled by its main conducting nodes between the output node of the logic device and a ground voltage rail. The gates of the first n-channel and p-channel transistors are coupled to the output node.
Abstract:
A pulse signal generator has an input receiving an initial pulse signal having an initial period, an oscillator generating an oscillator signal, a first stage and a second stage. The first stage is synchronized with the oscillator signal and configured to deliver a secondary pulse signal having a separation between successive pulses that is representative of an integer part of a division of the initial period by an integer N. The first stage further delivers an auxiliary signal representative of a fractional part of the division and containing, for each pulse of the secondary pulse signal, an indication of a time shift to be applied to the pulse taking into account the separation. The second stage is configured to receive the successive pulses and the corresponding time shift indications and generate successive corresponding pulses of an output pulse signal.
Abstract:
A pulse signal generator has an input receiving an initial pulse signal having an initial period, an oscillator generating an oscillator signal, a first stage and a second stage. The first stage is synchronized with the oscillator signal and configured to deliver a secondary pulse signal having a separation between successive pulses that is representative of an integer part of a division of the initial period by an integer N. The first stage further delivers an auxiliary signal representative of a fractional part of the division and containing, for each pulse of the secondary pulse signal, an indication of a time shift to be applied to the pulse taking into account the separation. The second stage is configured to receive the successive pulses and the corresponding time shift indications and generate successive corresponding pulses of an output pulse signal.
Abstract:
A memory device includes first and second inverters cross-coupled between first and second nodes. The first inverter is configured to be supplied by a first supply voltage via a first transistor and the second inverter is configured to be supplied by the first supply voltage via a second transistor. A first control circuit is configured to control a gate node of the first transistor based on the voltage at the second node and at a gate node of the second transistor. A second control circuit is configured to control the gate node of the second transistor based on the voltage at the first node and at the gate node of the first transistor.