Abstract:
A device and corresponding fabrication method includes a vertical stack having an intermediate layer between a lower region and an upper region. The intermediate layer is extended by a protection layer. The vertical stack has a free lateral face on which the lower region, the upper region and the protection layer are exposed.
Abstract:
A spectral filter is manufactured using a process wherein a first rectangular bar is formed within a first layer made of a first material, said first rectangular bar being made of a second material having a different optical index. The process further includes, in a second layer over the first layer, a second rectangular bar made of the second material. The second rectangular bar is positioned in contact with the first rectangular bar. The second layer is also made of the first material.
Abstract:
A photodiode includes at least one central pad arranged on a light-receiving surface of a photodiode semiconductor substrate. The pad is made of a first material and includes lateral sidewalls surrounded by a spacer made of a second material having a different optical index than the first material. The lateral dimensions of the pad are smaller than an operating wavelength of the photodiode. Both the first and second materials are transparent to that operating wavelength. The pads and spacers are formed at a same time gate electrodes and sidewall spacers of MOS transistors are formed.
Abstract:
A photodiode includes at least one central pad arranged on a light-receiving surface of a photodiode semiconductor substrate. The pad is made of a first material and includes lateral sidewalls surrounded by a spacer made of a second material having a different optical index than the first material. The lateral dimensions of the pad are smaller than an operating wavelength of the photodiode. Both the first and second materials are transparent to that operating wavelength. The pads and spacers are formed at a same time gate electrodes and sidewall spacers of MOS transistors are formed.
Abstract:
An image sensor including a semiconductor layer; a stack of insulating layers resting on the back side of the semiconductor layer; a conductive layer portion extending along part of the height of the stack and flush with the exposed surface of the stack; laterally-insulated conductive fingers extending through the semiconductor layer from its front side and penetrating into said layer portion; laterally-insulated conductive walls separating pixel areas, these walls extending through the semiconductor layer from its front side and having a lower height than the fingers; and an interconnection structure resting on the front side of the semiconductor layer and including vias in contact with the fingers.
Abstract:
A SPAD-type photodiode has a semiconductor substrate with a light-receiving surface. A lattice formed of interlaced strips made of a first material covers the light receiving surface. The lattice includes lattice openings with lateral walls covered by a spacer made of a second material. Then first and second materials have different optical indices, and further each optical index is less than or equal to the substrate optical index. A pitch of the lattice is of the order of a magnitude of an operating wavelength of the photodiode. The first and second materials are transparent at that operating wavelength. The lattice is made of a conductive material electrically coupled to an electrical connection node (for example, a bias voltage node).
Abstract:
An integrated circuit includes a substrate and an interconnect part above the substrate, and further includes a photosensitive region in the substrate. A filter is provided aligned with the photosensitive region. The filter is formed by at least one layer of filter material. In one implementation for front side illumination, the layer of filter material is positioned above the photosensitive region between the interconnect part and the substrate. In another implementation for back side illumination, the layer of filter material is positioned below the photosensitive region opposite the interconnect part. The layer of filter material is configured such that a product of the thickness of the layer of filter material and the imaginary part of the refractive index of the layer of filter material is above 1 nm.
Abstract:
An integrated imaging device supports front face illumination with one or more photosensitive regions formed in a substrate. A lower dielectric region is provided over the substrate, the lower dielectric region having an upper face. A metal optical filter having a metal pattern is provided on the upper face (or extending into the lower dielectric region from the upper face). An upper dielectric region is provided on top of the lower dielectric region and metal optical filter. The lower dielectric region is at least part of a pre-metal dielectric layer, and the upper dielectric region is at least part of a metallization layer.
Abstract:
A method of forming a heavily-doped silicon layer on a more lightly-doped silicon substrate including the steps of depositing a heavily-doped amorphous silicon layer; depositing a silicon nitride layer; and heating the amorphous silicon layer to a temperature higher than or equal to the melting temperature of silicon.
Abstract:
An integrated circuit includes a substrate and an interconnect part above the substrate, and further includes a photosensitive region in the substrate. A filter is provided aligned with the photosensitive region. The filter is formed by at least one layer of filter material. In one implementation for front side illumination, the layer of filter material is positioned above the photosensitive region between the interconnect part and the substrate. In another implementation for back side illumination, the layer of filter material is positioned below the photosensitive region opposite the interconnect part. The layer of filter material is configured such that a product of the thickness of the layer of filter material and the imaginary part of the refractive index of the layer of filter material is above 1 nm.