Abstract:
A method of manufacturing a pinned photodiode, including: forming a region of photon conversion into electric charges of a first conductivity type on a substrate of the second conductivity type; coating said region with a layer of a heavily-doped insulator of the second conductivity type; and annealing to ensure a dopant diffusion from the heavily-doped insulator layer.
Abstract:
A method of manufacturing a pinned photodiode, including: forming a region of photon conversion into electric charges of a first conductivity type on a substrate of the second conductivity type; coating said region with a layer of a heavily-doped insulator of the second conductivity type; and annealing to ensure a dopant diffusion from the heavily-doped insulator layer.
Abstract:
A method of forming a heavily-doped silicon layer on a more lightly-doped silicon substrate including the steps of depositing a heavily-doped amorphous silicon layer; depositing a silicon nitride layer; and heating the amorphous silicon layer to a temperature higher than or equal to the melting temperature of silicon.
Abstract:
An image sensor cell formed inside and on top of a substrate of a first conductivity type includes: a storage region of the second conductivity type; a read region of the second conductivity type; a transfer region located between the storage region and the read region; and a transfer gate topping the transfer region and which does not or does not totally top the storage region. The transfer region comprises a first area of the first conductivity type in the vicinity of the storage region, and a second area of the second conductivity type extending between the first area and the read region.
Abstract:
A semiconductor image sensor includes a plurality of pixels. Each pixel of the sensor includes a semiconductor substrate having opposite front and back sides and laterally delimited by a first insulating wall including a first conductive core insulated from the substrate, electron-hole pairs being capable of forming in the substrate due to a back-side illumination. A circuit is configured to maintain, during a first phase in a first operating mode, the first conductive core at a first potential and to maintain, during at least a portion of the first phase in a second operating mode, the first conductive core at a second potential different from the first potential.
Abstract:
A semiconductor substrate doped with a first doping type is positioned adjacent an insulated gate electrode that is biased by a gate voltage. A first region within the semiconductor substrate is doped with the first doping type and biased with a bias voltage. A second region within the semiconductor substrate is doped with a second doping type that is opposite the first doping type. Voltage application produces an electrostatic field within the semiconductor substrate causing the formation of a fully depleted region within the semiconductor substrate. The fully depleted region responds to absorption of a photon with an avalanche multiplication that produces charges that are collected at the first and second regions.
Abstract:
A pixel includes a semiconductor layer with a charge accumulation layer extending in the semiconductor layer. A transistor has a read region penetrating into said semiconductor layer down to a first depth. An insulating wall penetrates into the semiconductor layer from an upper surface and containing an insulated conductor connected to a node of application of a potential. The insulating wall includes at least a portion provided with a deep insulating plug penetrating into the insulated conductor down to a second depth greater than the first depth. A continuous portion of the insulating wall laterally delimits, at least partially, a charge accumulation area and includes a wall portion with the deep insulating plug at least partially laterally delimiting the read region of the transistor.
Abstract:
A semiconductor substrate doped with a first doping type is positioned adjacent an insulated gate electrode that is biased by a gate voltage. A first region within the semiconductor substrate is doped with the first doping type and biased with a bias voltage. A second region within the semiconductor substrate is doped with a second doping type that is opposite the first doping type. Voltage application produces an electrostatic field within the semiconductor substrate causing the formation of a fully depleted region within the semiconductor substrate. The fully depleted region responds to absorption of a photon with an avalanche multiplication that produces charges that are collected at the first and second regions.
Abstract:
A pixel is formed on a semiconductor substrate that includes a photosensitive area having a first doped layer and a charge collection area of a first conductivity type extending through at least part of the first doped layer. At least two charge storage areas, each including a well of the first conductivity type, are separated from the charge collection area at least by a first portion of the first layer. The first portion is covered by a first gate. Each charge storage area is laterally delimited by two insulated conductive electrodes. A second doped layer of the second conductivity type covers the charge collection area and the charge storage areas.
Abstract:
An image sensor includes a control circuit and pixels. Each pixel includes: a photosensitive area, a substantially rectangular storage area adjacent to the photosensitive area, and a read area. First and second insulated vertical electrodes electrically connected to each other are positioned opposite each other and delimit the storage area. The first electrode extends between the storage area and the photosensitive area. The second electrode includes a bent extension opposite a first end of the first electrode, with the storage area emerging onto the photosensitive area on the side of the first end. The control circuit operates to apply a first voltage to the first and second electrodes to perform a charge transfer, and a second voltage to block charge transfer.